These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 31508321)

  • 1. Human-exoskeleton control simulation, kinetic and kinematic modeling and parameters extraction.
    Khamar M; Edrisi M; Zahiri M
    MethodsX; 2019; 6():1838-1846. PubMed ID: 31508321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A platform for dynamic simulation and control of movement based on OpenSim and MATLAB.
    Mansouri M; Reinbolt JA
    J Biomech; 2012 May; 45(8):1517-21. PubMed ID: 22464351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of movement of an elbow joint with a wearable robotic exoskeleton Using OpenSim software.
    Noei V; Lakany H
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():4342-4345. PubMed ID: 36086238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical Design and Kinematic Modeling of a Cable-Driven Arm Exoskeleton Incorporating Inaccurate Human Limb Anthropomorphic Parameters.
    Chen W; Li Z; Cui X; Zhang J; Bai S
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31618848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional Evaluation of a Force Sensor-Controlled Upper-Limb Power-Assisted Exoskeleton with High Backdrivability.
    Liu C; Liang H; Ueda N; Li P; Fujimoto Y; Zhu C
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33182271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methodology for Selecting the Appropriate Electric Motor for Robotic Modular Systems for Lower Extremities.
    Kavalieros D; Kapothanasis E; Kakarountas A; Loukopoulos T
    Healthcare (Basel); 2022 Oct; 10(10):. PubMed ID: 36292506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Musculoskeletal modeling and humanoid control of robots based on human gait data.
    Yu J; Zhang S; Wang A; Li W; Song L
    PeerJ Comput Sci; 2021; 7():e657. PubMed ID: 34458572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assistive powered exoskeleton for complete spinal cord injury: correlations between walking ability and exoskeleton control.
    Guanziroli E; Cazzaniga M; Colombo L; Basilico S; Legnani G; Molteni F
    Eur J Phys Rehabil Med; 2019 Apr; 55(2):209-216. PubMed ID: 30156088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning to walk with a robotic ankle exoskeleton.
    Gordon KE; Ferris DP
    J Biomech; 2007; 40(12):2636-44. PubMed ID: 17275829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic Model of a Humanoid Exoskeleton of a Lower Limb with Hydraulic Actuators.
    Glowinski S; Obst M; Majdanik S; Potocka-Banaś B
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34069145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive control based on an on-line parameter estimation of an upper limb exoskeleton.
    Riani A; Madani T; Hadri AE; Benallegue A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():695-701. PubMed ID: 28813901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Kinematics and workspace analysis of a spherical exoskeleton parallel mechanism].
    Zhao Y; Xia H; Yao Y; Li R
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Apr; 36(2):213-222. PubMed ID: 31016937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model-based control for exoskeletons with series elastic actuators evaluated on sit-to-stand movements.
    Vantilt J; Tanghe K; Afschrift M; Bruijnes AKBD; Junius K; Geeroms J; Aertbeliën E; De Groote F; Lefeber D; Jonkers I; De Schutter J
    J Neuroeng Rehabil; 2019 Jun; 16(1):65. PubMed ID: 31159874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design-validation of a hand exoskeleton using musculoskeletal modeling.
    Hansen C; Gosselin F; Ben Mansour K; Devos P; Marin F
    Appl Ergon; 2018 Apr; 68():283-288. PubMed ID: 29409646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinematic analysis of the finger exoskeleton using MATLAB/Simulink.
    Nasiłowski K; Awrejcewicz J; Lewandowski D
    Acta Bioeng Biomech; 2014; 16(3):129-34. PubMed ID: 25307532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Study on the influence of wearable lower limb exoskeleton on gait characteristics].
    Zhang J; Cai Y; Liu Q
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Oct; 36(5):785-794. PubMed ID: 31631627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation on the Effect of Gait Variability, Delays, and Inertia with Respect to Wearer Energy Savings with Exoskeleton Assistance.
    Fang S; Kinney AL; Reissman ME; Reissman T
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():506-511. PubMed ID: 31374680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Double closed-loop cascade control for lower limb exoskeleton with elastic actuation.
    Zhu Y; Zheng T; Jin H; Yang J; Zhao J
    Technol Health Care; 2015; 24 Suppl 1():S113-22. PubMed ID: 26409545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exoskeleton for post-stroke recovery of ambulation (ExStRA): study protocol for a mixed-methods study investigating the efficacy and acceptance of an exoskeleton-based physical therapy program during stroke inpatient rehabilitation.
    Louie DR; Mortenson WB; Durocher M; Teasell R; Yao J; Eng JJ
    BMC Neurol; 2020 Jan; 20(1):35. PubMed ID: 31992219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.