These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 3150853)

  • 1. [Theoretical studies of the electrostatic interactions in aspartic proteinases, intramolecular interactions in pepsin and penicillopepsin].
    Miteva A; Karshikov A; Atanasov B; Zhdanov AA; Andreeva NS
    Mol Biol (Mosk); 1988; 22(6):1456-63. PubMed ID: 3150853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of pH on the activities of penicillopepsin and Rhizopus pepsin and a proposal for the productive substrate binding mode in penicillopepsin.
    Hofmann T; Hodges RS; James MN
    Biochemistry; 1984 Feb; 23(4):635-43. PubMed ID: 6424704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction, expression and characterization of a chimaeric mammalian-plant aspartic proteinase.
    Payie KG; Tanaka T; Gal S; Yada RY
    Biochem J; 2003 Jun; 372(Pt 3):671-8. PubMed ID: 12630913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Number of cooperative regions (energy domains) in the pepsin molecule depends on the pH of the medium].
    Makarov AA; Protasevich II; Frank EG; Grishina IB; Bolotina IA; Esipova NG
    Biofizika; 1991; 36(1):39-45. PubMed ID: 1854829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. X-ray analyses of aspartic proteinases. V. Structure and refinement at 2.0 A resolution of the aspartic proteinase from Mucor pusillus.
    Newman M; Watson F; Roychowdhury P; Jones H; Badasso M; Cleasby A; Wood SP; Tickle IJ; Blundell TL
    J Mol Biol; 1993 Mar; 230(1):260-83. PubMed ID: 8450540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrostatic contributions to the stability of halophilic proteins.
    Elcock AH; McCammon JA
    J Mol Biol; 1998 Jul; 280(4):731-48. PubMed ID: 9677300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of N-linked glycosylation on the aspartic proteinase porcine pepsin expressed from Pichia pastoris.
    Yoshimasu MA; Tanaka T; Ahn JK; Yada RY
    Glycobiology; 2004 May; 14(5):417-29. PubMed ID: 14693908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pH-dependent stability of sperm whale myoglobin in water-guanidine hydrochloride solutions.
    Shosheva A; Miteva M; Christova P; Atanasov B
    Eur Biophys J; 2003 Feb; 31(8):617-25. PubMed ID: 12582821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toxoplasma gondii ferredoxin-NADP+ reductase: Role of ionic interactions in stabilization of native conformation and structural cooperativity.
    Singh K; Bhakuni V
    Proteins; 2008 Jun; 71(4):1879-88. PubMed ID: 18175327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aspartic proteinases: their activation and structural studies.
    Turk V; Puizdar V; Lah T; Kregar I
    Prog Clin Biol Res; 1982; 102 Pt C():75-86. PubMed ID: 6762543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The structure of pepsin. I. Molecular self-symmetry of the enzyme and implications for the evolution of aspartate proteinases].
    Andreeva NS
    Mol Biol (Mosk); 1985; 19(1):218-24. PubMed ID: 3920505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Influence of pH and thermal treatment on the intramolecular mobility of pepsin].
    Glotov BO; Kozlov LV; Zavada LL
    Mol Biol (Mosk); 1976; 10(2):530-7. PubMed ID: 36550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calculating proton uptake/release and binding free energy taking into account ionization and conformation changes induced by protein-inhibitor association: application to plasmepsin, cathepsin D and endothiapepsin-pepstatin complexes.
    Alexov E
    Proteins; 2004 Aug; 56(3):572-84. PubMed ID: 15229889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The structure of pepsin. II. Structure of the enzyme active site (at 2 angstroms resolution)].
    Gushchina AE; Andreeva NS
    Mol Biol (Mosk); 1985; 19(1):225-9. PubMed ID: 3920506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical calculations on the acidity of the active site in aspartic proteinases.
    Goldblum A
    Biochemistry; 1988 Mar; 27(5):1653-8. PubMed ID: 3284587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrostatic effects in a large enzyme complex: subunit interactions and electrostatic potential field of the icosahedral beta 60 capsid of heavy riboflavin synthase.
    Karshikov A; Ladenstein R
    Proteins; 1989; 5(3):248-57. PubMed ID: 2506544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. pH-dependent denaturation of extracellular aspartic proteinases from Candida species.
    Wagner T; Borg von Zepelin M; RĂ¼chel R
    J Med Vet Mycol; 1995; 33(4):275-8. PubMed ID: 8531028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gastric proteinases--structure, function, evolution and mechanism of action.
    Foltmann B
    Essays Biochem; 1981; 17():52-84. PubMed ID: 6795036
    [No Abstract]   [Full Text] [Related]  

  • 19. Why does pepsin have a negative charge at very low pH? An analysis of conserved charged residues in aspartic proteinases.
    Andreeva NS; James MN
    Adv Exp Med Biol; 1991; 306():39-45. PubMed ID: 1812734
    [No Abstract]   [Full Text] [Related]  

  • 20. A new chromophoric substrate for penicillopepsin and other fungal aspartic proteinases.
    Hofmann T; Hodges RS
    Biochem J; 1982 Jun; 203(3):603-10. PubMed ID: 7052062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.