These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 31508620)
1. Two-dimensional Na Pham TD; Luong HD; Sato K; Shibutani Y; Dinh VA Phys Chem Chem Phys; 2019 Nov; 21(44):24326-24332. PubMed ID: 31508620 [TBL] [Abstract][Full Text] [Related]
2. Graphether: a reversible and high-capacity anode material for sodium-ion batteries with ultrafast directional Na-ion diffusion. Ye XJ; Zhu GL; Meng L; Guo YD; Liu CS Phys Chem Chem Phys; 2021 Jun; 23(21):12371-12375. PubMed ID: 34027526 [TBL] [Abstract][Full Text] [Related]
3. Borophene as a promising anode material for sodium-ion batteries with high capacity and high rate capability using DFT. Liu J; Zhang C; Xu L; Ju S RSC Adv; 2018 May; 8(32):17773-17785. PubMed ID: 35542083 [TBL] [Abstract][Full Text] [Related]
4. Ab initio prediction and characterization of phosphorene-like SiS and SiSe as anode materials for sodium-ion batteries. Jiang H; Zhao T; Ren Y; Zhang R; Wu M Sci Bull (Beijing); 2017 Apr; 62(8):572-578. PubMed ID: 36659365 [TBL] [Abstract][Full Text] [Related]
5. Penta-BCN monolayer with high specific capacity and mobility as a compelling anode material for rechargeable batteries. Chen L; Yang M; Kong F; Du W; Guo J; Shu H Phys Chem Chem Phys; 2021 Aug; 23(32):17693-17702. PubMed ID: 34374399 [TBL] [Abstract][Full Text] [Related]
6. Arsenene monolayer as an outstanding anode material for (Li/Na/Mg)-ion batteries: density functional theory. Benzidi H; Lakhal M; Garara M; Abdellaoui M; Benyoussef A; El Kenz A; Mounkachi O Phys Chem Chem Phys; 2019 Sep; 21(36):19951-19962. PubMed ID: 31475997 [TBL] [Abstract][Full Text] [Related]
7. Assembling Si Younis U; Muhammad I; Wu W; Ahmed S; Sun Q; Jena P Nanoscale; 2020 Oct; 12(37):19367-19374. PubMed ID: 32945313 [TBL] [Abstract][Full Text] [Related]
8. Ab Initio Prediction of Two-Dimensional GeSiBi Li L; Zhang W; Zhang J; Liu D; Li J; Ren J; Guo X; Lu X ACS Appl Mater Interfaces; 2024 Jul; 16(30):40111-40122. PubMed ID: 39031063 [TBL] [Abstract][Full Text] [Related]
9. Sc Lv X; Wei W; Sun Q; Yu L; Huang B; Dai Y Chemphyschem; 2017 Jun; 18(12):1627-1634. PubMed ID: 28383808 [TBL] [Abstract][Full Text] [Related]
10. Ab initio study of a 2D h-BAs monolayer: a promising anode material for alkali-metal ion batteries. Khossossi N; Banerjee A; Benhouria Y; Essaoudi I; Ainane A; Ahuja R Phys Chem Chem Phys; 2019 Aug; 21(33):18328-18337. PubMed ID: 31397457 [TBL] [Abstract][Full Text] [Related]
11. Ab initio study of sodium diffusion and adsorption on boron-doped graphyne as promising anode material in sodium-ion batteries. Nasrollahpour M; Vafaee M; Hosseini MR; Iravani H Phys Chem Chem Phys; 2018 Dec; 20(47):29889-29895. PubMed ID: 30468442 [TBL] [Abstract][Full Text] [Related]
12. Lithiation and Sodiation of Hydrogenated Silicene: A Density Functional Theory Investigation. Rehman J; Fan X; Samad A; Zheng W ChemSusChem; 2021 Dec; 14(24):5460-5469. PubMed ID: 34590444 [TBL] [Abstract][Full Text] [Related]
13. Borophosphene as a promising Dirac anode with large capacity and high-rate capability for sodium-ion batteries. Zhang Y; Zhang EH; Xia MG; Zhang SL Phys Chem Chem Phys; 2020 Sep; 22(36):20851-20857. PubMed ID: 32914819 [TBL] [Abstract][Full Text] [Related]
14. Magnesene: a theoretical prediction of a metallic, fast, high-capacity, and reversible anode material for sodium-ion batteries. Ye XJ; Li TK; He JJ; Wang XF; Liu CS Nanoscale; 2022 Apr; 14(16):6118-6125. PubMed ID: 35388866 [TBL] [Abstract][Full Text] [Related]
15. Out-of-plane ion transport makes nitrogenated holey graphite a promising high-rate anode for both Li and Na ion batteries. Huang H; Wu HH; Chi C; Zhu J; Huang B; Zhang TY Nanoscale; 2019 Oct; 11(40):18758-18768. PubMed ID: 31591618 [TBL] [Abstract][Full Text] [Related]
16. Metallic FeSe monolayer as an anode material for Li and non-Li ion batteries: a DFT study. Lv X; Li F; Gong J; Gu J; Lin S; Chen Z Phys Chem Chem Phys; 2020 Apr; 22(16):8902-8912. PubMed ID: 32289818 [TBL] [Abstract][Full Text] [Related]
17. 2D Dumbbell Silicene as a High Storage Capacity and Fast Ion Diffusion Anode for Li-Ion Batteries. Vargas DD; Cardoso GL; Piquini PC; Ahuja R; Baierle RJ ACS Appl Mater Interfaces; 2022 Oct; 14(41):47262-47271. PubMed ID: 36205921 [TBL] [Abstract][Full Text] [Related]
18. Theoretical investigation of a tetrazine based covalent organic framework as a promising anode material for sodium/calcium ion batteries. Das P; Ball B; Sarkar P Phys Chem Chem Phys; 2022 Sep; 24(36):21729-21739. PubMed ID: 36082794 [TBL] [Abstract][Full Text] [Related]
19. Nb Wang Y; Tian W; Zhang H; Wang Y Phys Chem Chem Phys; 2021 Jun; 23(21):12288-12295. PubMed ID: 34018511 [TBL] [Abstract][Full Text] [Related]
20. A first-principles comparative study of lithium, sodium, potassium and calcium storage in two-dimensional Mg Chu YZ; Yeoh KH; Chew KH J Phys Condens Matter; 2021 Feb; 33(7):075002. PubMed ID: 33152714 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]