BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 31508644)

  • 1. Contactless, programmable acoustofluidic manipulation of objects on water.
    Zhang P; Chen C; Guo F; Philippe J; Gu Y; Tian Z; Bachman H; Ren L; Yang S; Zhong Z; Huang PH; Katsanis N; Chakrabarty K; Huang TJ
    Lab Chip; 2019 Oct; 19(20):3397-3404. PubMed ID: 31508644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional numerical simulation and experimental investigation of boundary-driven streaming in surface acoustic wave microfluidics.
    Chen C; Zhang SP; Mao Z; Nama N; Gu Y; Huang PH; Jing Y; Guo X; Costanzo F; Huang TJ
    Lab Chip; 2018 Dec; 18(23):3645-3654. PubMed ID: 30361727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detachable Acoustofluidic System for Particle Separation via a Traveling Surface Acoustic Wave.
    Ma Z; Collins DJ; Ai Y
    Anal Chem; 2016 May; 88(10):5316-23. PubMed ID: 27086552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous micro-vortex-based nanoparticle manipulation via focused surface acoustic waves.
    Collins DJ; Ma Z; Han J; Ai Y
    Lab Chip; 2016 Dec; 17(1):91-103. PubMed ID: 27883136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The complexity of surface acoustic wave fields used for microfluidic applications.
    Weser R; Winkler A; Weihnacht M; Menzel S; Schmidt H
    Ultrasonics; 2020 Aug; 106():106160. PubMed ID: 32334142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of Surface Acoustic Wave Devices on Lithium Niobate.
    Mei J; Zhang N; Friend J
    J Vis Exp; 2020 Jun; (160):. PubMed ID: 32628169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acoustic tweezers based on circular, slanted-finger interdigital transducers for dynamic manipulation of micro-objects.
    Kang P; Tian Z; Yang S; Yu W; Zhu H; Bachman H; Zhao S; Zhang P; Wang Z; Zhong R; Huang TJ
    Lab Chip; 2020 Mar; 20(5):987-994. PubMed ID: 32010910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of Nanoheight Channels Incorporating Surface Acoustic Wave Actuation via Lithium Niobate for Acoustic Nanofluidics.
    Zhang N; Friend J
    J Vis Exp; 2020 Feb; (156):. PubMed ID: 32090998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nebulisation on a disposable array structured with phononic lattices.
    Reboud J; Wilson R; Zhang Y; Ismail MH; Bourquin Y; Cooper JM
    Lab Chip; 2012 Apr; 12(7):1268-73. PubMed ID: 22327572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-throughput and directed microparticle manipulation in complex-shaped maze chambers based on travelling surface acoustic waves.
    Weng W; Pan H; Wang Y
    Analyst; 2022 Nov; 147(22):4962-4970. PubMed ID: 36255404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measuring Velocity, Attenuation, and Reflection in Surface Acoustic Wave Cavities Through Acoustic Fabry-PĂ©rot Spectra.
    Kelly L; Berini P; Bao X
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Apr; 69(4):1542-1548. PubMed ID: 35081023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current Development in Interdigital Transducer (IDT) Surface Acoustic Wave Devices for Live Cell In Vitro Studies: A Review.
    Mazalan MB; Noor AM; Wahab Y; Yahud S; Zaman WSWK
    Micromachines (Basel); 2021 Dec; 13(1):. PubMed ID: 35056195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polydimethylsiloxane-LiNbO3 surface acoustic wave micropump devices for fluid control into microchannels.
    Girardo S; Cecchini M; Beltram F; Cingolani R; Pisignano D
    Lab Chip; 2008 Sep; 8(9):1557-63. PubMed ID: 18818813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The acoustofluidic focusing and separation of rare tumor cells using transparent lithium niobate transducers.
    Wu Z; Jiang H; Zhang L; Yi K; Cui H; Wang F; Liu W; Zhao X; Zhou F; Guo S
    Lab Chip; 2019 Dec; 19(23):3922-3930. PubMed ID: 31693035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An on-chip, multichannel droplet sorter using standing surface acoustic waves.
    Li S; Ding X; Guo F; Chen Y; Lapsley MI; Lin SC; Wang L; McCoy JP; Cameron CE; Huang TJ
    Anal Chem; 2013 Jun; 85(11):5468-74. PubMed ID: 23647057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acoustophoretic Control of Microparticle Transport Using Dual-Wavelength Surface Acoustic Wave Devices.
    Hsu JC; Hsu CH; Huang YW
    Micromachines (Basel); 2019 Jan; 10(1):. PubMed ID: 30642118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and Operation of Acoustofluidic Devices Supporting Bulk Acoustic Standing Waves for Sheathless Focusing of Particles.
    Shields CW; Cruz DF; Ohiri KA; Yellen BB; Lopez GP
    J Vis Exp; 2016 Mar; (109):. PubMed ID: 27022681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Residue-free acoustofluidic manipulation of microparticles via removal of microchannel anechoic corner.
    Khan MS; Sahin MA; Destgeer G; Park J
    Ultrason Sonochem; 2022 Sep; 89():106161. PubMed ID: 36088893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Programmable Droplet Microfluidics Based on Machine Learning and Acoustic Manipulation.
    Yiannacou K; Sharma V; Sariola V
    Langmuir; 2022 Sep; 38(38):11557-11564. PubMed ID: 36099548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustic Manipulation of Droplets under Reduced Gravity.
    Hasegawa K; Watanabe A; Abe Y
    Sci Rep; 2019 Nov; 9(1):16603. PubMed ID: 31719646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.