These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 31508857)
1. RASSF4 is required for skeletal muscle differentiation. Lin YT; Deel MD; Linardic CM Cell Biol Int; 2020 Feb; 44(2):381-390. PubMed ID: 31508857 [TBL] [Abstract][Full Text] [Related]
2. Flt3L is a novel regulator of skeletal myogenesis. Ge Y; Waldemer RJ; Nalluri R; Nuzzi PD; Chen J J Cell Sci; 2013 Aug; 126(Pt 15):3370-9. PubMed ID: 23704355 [TBL] [Abstract][Full Text] [Related]
3. [Interactions of proliferation and differentiation signaling pathways in myogenesis]. Milewska M; Grabiec K; Grzelkowska-Kowalczyk K Postepy Hig Med Dosw (Online); 2014 May; 68():516-26. PubMed ID: 24864103 [TBL] [Abstract][Full Text] [Related]
4. A novel in vitro model for the assessment of postnatal myonuclear accretion. Kneppers A; Verdijk L; de Theije C; Corten M; Gielen E; van Loon L; Schols A; Langen R Skelet Muscle; 2018 Feb; 8(1):4. PubMed ID: 29444710 [TBL] [Abstract][Full Text] [Related]
5. Lipopolysaccharide inhibits myogenic differentiation of C2C12 myoblasts through the Toll-like receptor 4-nuclear factor-κB signaling pathway and myoblast-derived tumor necrosis factor-α. Ono Y; Sakamoto K PLoS One; 2017; 12(7):e0182040. PubMed ID: 28742154 [TBL] [Abstract][Full Text] [Related]
6. Mesenchymal stem cells and myoblast differentiation under HGF and IGF-1 stimulation for 3D skeletal muscle tissue engineering. Witt R; Weigand A; Boos AM; Cai A; Dippold D; Boccaccini AR; Schubert DW; Hardt M; Lange C; Arkudas A; Horch RE; Beier JP BMC Cell Biol; 2017 Feb; 18(1):15. PubMed ID: 28245809 [TBL] [Abstract][Full Text] [Related]
7. Myogenic differentiation of primary myoblasts and mesenchymal stromal cells under serum-free conditions on PCL-collagen I-nanoscaffolds. Cai A; Hardt M; Schneider P; Schmid R; Lange C; Dippold D; Schubert DW; Boos AM; Weigand A; Arkudas A; Horch RE; Beier JP BMC Biotechnol; 2018 Nov; 18(1):75. PubMed ID: 30477471 [TBL] [Abstract][Full Text] [Related]
8. Breed-dependent microRNA expression in the primary culture of skeletal muscle cells subjected to myogenic differentiation. Sadkowski T; Ciecierska A; Oprządek J; Balcerek E BMC Genomics; 2018 Jan; 19(1):109. PubMed ID: 29390965 [TBL] [Abstract][Full Text] [Related]
9. The brain expressed x-linked gene 1 (Bex1) regulates myoblast fusion. Jiang C; Wang JH; Yue F; Kuang S Dev Biol; 2016 Jan; 409(1):16-25. PubMed ID: 26586200 [TBL] [Abstract][Full Text] [Related]
10. Ebp1 regulates myogenic differentiation of myoblast cells via SMAD2/3 signaling pathway. Yu M; Wang H; Liu Z; Lu Y; Yu D; Li D; Du W Dev Growth Differ; 2017 Aug; 59(6):540-551. PubMed ID: 28707296 [TBL] [Abstract][Full Text] [Related]
12. Promoting Primary Myoblast Differentiation Through Retinoid X Receptor Signaling. Chen J; Li Q Methods Mol Biol; 2019; 2019():123-128. PubMed ID: 31359393 [TBL] [Abstract][Full Text] [Related]
13. Myogenesis and rhabdomyosarcoma the Jekyll and Hyde of skeletal muscle. Saab R; Spunt SL; Skapek SX Curr Top Dev Biol; 2011; 94():197-234. PubMed ID: 21295688 [TBL] [Abstract][Full Text] [Related]
14. A role for Regulator of G protein Signaling-12 (RGS12) in the balance between myoblast proliferation and differentiation. Schroer AB; Mohamed JS; Willard MD; Setola V; Oestreich E; Siderovski DP PLoS One; 2019; 14(8):e0216167. PubMed ID: 31408461 [TBL] [Abstract][Full Text] [Related]
15. CCAAT/Enhancer Binding Protein β inhibits myogenic differentiation via ID3. AlSudais H; Lala-Tabbert N; Wiper-Bergeron N Sci Rep; 2018 Nov; 8(1):16613. PubMed ID: 30413755 [TBL] [Abstract][Full Text] [Related]
16. Terminal differentiation program of skeletal myogenesis is negatively regulated by O-GlcNAc glycosylation. Ogawa M; Mizofuchi H; Kobayashi Y; Tsuzuki G; Yamamoto M; Wada S; Kamemura K Biochim Biophys Acta; 2012 Jan; 1820(1):24-32. PubMed ID: 22056510 [TBL] [Abstract][Full Text] [Related]
17. Role of the α2 subunit of AMP-activated protein kinase and its nuclear localization in mitochondria and energy metabolism-related gene expressions in C2C12 cells. Okamoto S; Asgar NF; Yokota S; Saito K; Minokoshi Y Metabolism; 2019 Jan; 90():52-68. PubMed ID: 30359677 [TBL] [Abstract][Full Text] [Related]
18. Signals of Ezh2, Src, and Akt Involve in myostatin-Pax7 pathways regulating the myogenic fate determination during the sheep myoblast proliferation and differentiation. Wei C; Ren H; Xu L; Li L; Liu R; Zhang L; Zhao F; Lu J; Zhang X; Du L PLoS One; 2015; 10(3):e0120956. PubMed ID: 25811841 [TBL] [Abstract][Full Text] [Related]
19. Ethanol-Impaired Myogenic Differentiation is Associated With Decreased Myoblast Glycolytic Function. Levitt DE; Chalapati N; Prendergast MJ; Simon L; Molina PE Alcohol Clin Exp Res; 2020 Nov; 44(11):2166-2176. PubMed ID: 32945016 [TBL] [Abstract][Full Text] [Related]
20. Dual roles of palladin protein in in vitro myogenesis: inhibition of early induction but promotion of myotube maturation. Nguyen NU; Wang HV PLoS One; 2015; 10(4):e0124762. PubMed ID: 25875253 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]