BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 31508857)

  • 1. RASSF4 is required for skeletal muscle differentiation.
    Lin YT; Deel MD; Linardic CM
    Cell Biol Int; 2020 Feb; 44(2):381-390. PubMed ID: 31508857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flt3L is a novel regulator of skeletal myogenesis.
    Ge Y; Waldemer RJ; Nalluri R; Nuzzi PD; Chen J
    J Cell Sci; 2013 Aug; 126(Pt 15):3370-9. PubMed ID: 23704355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Interactions of proliferation and differentiation signaling pathways in myogenesis].
    Milewska M; Grabiec K; Grzelkowska-Kowalczyk K
    Postepy Hig Med Dosw (Online); 2014 May; 68():516-26. PubMed ID: 24864103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel in vitro model for the assessment of postnatal myonuclear accretion.
    Kneppers A; Verdijk L; de Theije C; Corten M; Gielen E; van Loon L; Schols A; Langen R
    Skelet Muscle; 2018 Feb; 8(1):4. PubMed ID: 29444710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipopolysaccharide inhibits myogenic differentiation of C2C12 myoblasts through the Toll-like receptor 4-nuclear factor-κB signaling pathway and myoblast-derived tumor necrosis factor-α.
    Ono Y; Sakamoto K
    PLoS One; 2017; 12(7):e0182040. PubMed ID: 28742154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mesenchymal stem cells and myoblast differentiation under HGF and IGF-1 stimulation for 3D skeletal muscle tissue engineering.
    Witt R; Weigand A; Boos AM; Cai A; Dippold D; Boccaccini AR; Schubert DW; Hardt M; Lange C; Arkudas A; Horch RE; Beier JP
    BMC Cell Biol; 2017 Feb; 18(1):15. PubMed ID: 28245809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myogenic differentiation of primary myoblasts and mesenchymal stromal cells under serum-free conditions on PCL-collagen I-nanoscaffolds.
    Cai A; Hardt M; Schneider P; Schmid R; Lange C; Dippold D; Schubert DW; Boos AM; Weigand A; Arkudas A; Horch RE; Beier JP
    BMC Biotechnol; 2018 Nov; 18(1):75. PubMed ID: 30477471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Breed-dependent microRNA expression in the primary culture of skeletal muscle cells subjected to myogenic differentiation.
    Sadkowski T; Ciecierska A; Oprządek J; Balcerek E
    BMC Genomics; 2018 Jan; 19(1):109. PubMed ID: 29390965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The brain expressed x-linked gene 1 (Bex1) regulates myoblast fusion.
    Jiang C; Wang JH; Yue F; Kuang S
    Dev Biol; 2016 Jan; 409(1):16-25. PubMed ID: 26586200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ebp1 regulates myogenic differentiation of myoblast cells via SMAD2/3 signaling pathway.
    Yu M; Wang H; Liu Z; Lu Y; Yu D; Li D; Du W
    Dev Growth Differ; 2017 Aug; 59(6):540-551. PubMed ID: 28707296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitophagy regulates mitochondrial network signaling, oxidative stress, and apoptosis during myoblast differentiation.
    Baechler BL; Bloemberg D; Quadrilatero J
    Autophagy; 2019 Sep; 15(9):1606-1619. PubMed ID: 30859901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Promoting Primary Myoblast Differentiation Through Retinoid X Receptor Signaling.
    Chen J; Li Q
    Methods Mol Biol; 2019; 2019():123-128. PubMed ID: 31359393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Myogenesis and rhabdomyosarcoma the Jekyll and Hyde of skeletal muscle.
    Saab R; Spunt SL; Skapek SX
    Curr Top Dev Biol; 2011; 94():197-234. PubMed ID: 21295688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A role for Regulator of G protein Signaling-12 (RGS12) in the balance between myoblast proliferation and differentiation.
    Schroer AB; Mohamed JS; Willard MD; Setola V; Oestreich E; Siderovski DP
    PLoS One; 2019; 14(8):e0216167. PubMed ID: 31408461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CCAAT/Enhancer Binding Protein β inhibits myogenic differentiation via ID3.
    AlSudais H; Lala-Tabbert N; Wiper-Bergeron N
    Sci Rep; 2018 Nov; 8(1):16613. PubMed ID: 30413755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Terminal differentiation program of skeletal myogenesis is negatively regulated by O-GlcNAc glycosylation.
    Ogawa M; Mizofuchi H; Kobayashi Y; Tsuzuki G; Yamamoto M; Wada S; Kamemura K
    Biochim Biophys Acta; 2012 Jan; 1820(1):24-32. PubMed ID: 22056510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of the α2 subunit of AMP-activated protein kinase and its nuclear localization in mitochondria and energy metabolism-related gene expressions in C2C12 cells.
    Okamoto S; Asgar NF; Yokota S; Saito K; Minokoshi Y
    Metabolism; 2019 Jan; 90():52-68. PubMed ID: 30359677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signals of Ezh2, Src, and Akt Involve in myostatin-Pax7 pathways regulating the myogenic fate determination during the sheep myoblast proliferation and differentiation.
    Wei C; Ren H; Xu L; Li L; Liu R; Zhang L; Zhao F; Lu J; Zhang X; Du L
    PLoS One; 2015; 10(3):e0120956. PubMed ID: 25811841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ethanol-Impaired Myogenic Differentiation is Associated With Decreased Myoblast Glycolytic Function.
    Levitt DE; Chalapati N; Prendergast MJ; Simon L; Molina PE
    Alcohol Clin Exp Res; 2020 Nov; 44(11):2166-2176. PubMed ID: 32945016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual roles of palladin protein in in vitro myogenesis: inhibition of early induction but promotion of myotube maturation.
    Nguyen NU; Wang HV
    PLoS One; 2015; 10(4):e0124762. PubMed ID: 25875253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.