BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 31508895)

  • 1. Investigation of the hemodynamic flow conditions and blood-induced stresses inside an abdominal aortic aneurysm by means of a SPH numerical model.
    Aricò C; Sinagra M; Nagy R; Napoli E; Tucciarelli T
    Int J Numer Method Biomed Eng; 2020 Jan; 36(1):e3263. PubMed ID: 31508895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of asymmetry in abdominal aortic aneurysms under physiologically realistic pulsatile flow conditions.
    Finol EA; Keyhani K; Amon CH
    J Biomech Eng; 2003 Apr; 125(2):207-17. PubMed ID: 12751282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow-induced wall shear stress in abdominal aortic aneurysms: Part I--steady flow hemodynamics.
    Finol EA; Amon CH
    Comput Methods Biomech Biomed Engin; 2002 Aug; 5(4):309-18. PubMed ID: 12186710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CFD modelling of abdominal aortic aneurysm on hemodynamic loads using a realistic geometry with CT.
    Soudah E; Ng EY; Loong TH; Bordone M; Pua U; Narayanan S
    Comput Math Methods Med; 2013; 2013():472564. PubMed ID: 23864906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D Modeling of Blood Flow in Simulated Abdominal Aortic Aneurysm.
    Gonzalez-Urquijo M; de Zamacona RG; Mendoza AKM; Iribarren MZ; Ibarra EG; Bencomo MDM; Fabiani MA
    Vasc Endovascular Surg; 2021 Oct; 55(7):677-683. PubMed ID: 33902355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blood flow in abdominal aortic aneurysms: pulsatile flow hemodynamics.
    Finol EA; Amon CH
    J Biomech Eng; 2001 Oct; 123(5):474-84. PubMed ID: 11601733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow-induced wall shear stress in abdominal aortic aneurysms: Part II--pulsatile flow hemodynamics.
    Finol EA; Amon CH
    Comput Methods Biomech Biomed Engin; 2002 Aug; 5(4):319-28. PubMed ID: 12186711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow dynamics in anatomical models of abdominal aortic aneurysms: computational analysis of pulsatile flow.
    Finol EA; Amon CH
    Acta Cient Venez; 2003; 54(1):43-9. PubMed ID: 14515766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of hemodynamics on lumen boundary displacements in abdominal aortic aneurysms by means of dynamic computed tomography and computational fluid dynamics.
    Piccinelli M; Vergara C; Antiga L; Forzenigo L; Biondetti P; Domanin M
    Biomech Model Mechanobiol; 2013 Nov; 12(6):1263-76. PubMed ID: 23446648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluid-structure interaction in abdominal aortic aneurysms: effects of asymmetry and wall thickness.
    Scotti CM; Shkolnik AD; Muluk SC; Finol EA
    Biomed Eng Online; 2005 Nov; 4():64. PubMed ID: 16271141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational study on hemodynamic changes in patient-specific proximal neck angulation of abdominal aortic aneurysm with time-varying velocity.
    Algabri YA; Rookkapan S; Gramigna V; Espino DM; Chatpun S
    Australas Phys Eng Sci Med; 2019 Mar; 42(1):181-190. PubMed ID: 30762222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simulation framework for estimating wall stress distribution of abdominal aortic aneurysm.
    Qin J; Zhang J; Chui CK; Huang WM; Yang T; Pang WM; Sudhakar V; Chang S
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():900-3. PubMed ID: 22254456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the abdominal aortic aneurysms: pulsatile state considerations.
    Viswanath N; Rodkiewicz CM; Zajac S
    Med Eng Phys; 1997 Jun; 19(4):343-51. PubMed ID: 9302674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical investigation of the effects of blood rheology and wall elasticity in abdominal aortic aneurysm under pulsatile flow conditions.
    Bilgi C; Atalık K
    Biorheology; 2019; 56(1):51-71. PubMed ID: 31045509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low wall shear stress predominates at sites of abdominal aortic aneurysm rupture.
    Boyd AJ; Kuhn DC; Lozowy RJ; Kulbisky GP
    J Vasc Surg; 2016 Jun; 63(6):1613-9. PubMed ID: 25752691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of hemodynamics in the development of dissecting aneurysm within patient-specific dissecting aneurismal aortas using computational fluid dynamics (CFD) simulations.
    Tse KM; Chiu P; Lee HP; Ho P
    J Biomech; 2011 Mar; 44(5):827-36. PubMed ID: 21256491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A numerical investigation on the steady and pulsatile flow characteristics in axi-symmetric abdominal aortic aneurysm models with some experimental evaluation.
    Yu SC; Chan WK; Ng BT; Chua LP
    J Med Eng Technol; 1999; 23(6):228-39. PubMed ID: 10738687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of exercise on hemodynamic conditions in the abdominal aorta.
    Taylor CA; Hughes TJ; Zarins CK
    J Vasc Surg; 1999 Jun; 29(6):1077-89. PubMed ID: 10359942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow and wall shear stress characterization after endovascular aneurysm repair and endovascular aneurysm sealing in an infrarenal aneurysm model.
    Boersen JT; Groot Jebbink E; Versluis M; Slump CH; Ku DN; de Vries JPM; Reijnen MMPJ
    J Vasc Surg; 2017 Dec; 66(6):1844-1853. PubMed ID: 28285931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of biomechanical factors affecting stent-graft migration in an abdominal aortic aneurysm model.
    Li Z; Kleinstreuer C
    J Biomech; 2006; 39(12):2264-73. PubMed ID: 16153654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.