These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 31508937)

  • 1. Multiple Anionic Transition-Metal Oxycarbide for Better Lithium Storage and Facilitated Multielectron Reactions.
    Cuan J; Zhou Y; Zhang J; Zhou T; Liang G; Li S; Yu X; Pang WK; Guo Z
    ACS Nano; 2019 Oct; 13(10):11665-11675. PubMed ID: 31508937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition-Metal Oxynitride: A Facile Strategy for Improving Electrochemical Capacitor Storage.
    Wang S; Li L; Shao Y; Zhang L; Li Y; Wu Y; Hao X
    Adv Mater; 2019 Mar; 31(10):e1806088. PubMed ID: 30637832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical coupling of manganese-cobalt oxide and oxidized multi-walled carbon nanotubes for enhanced lithium storage.
    Guo X; Ge H; Sun Z; Zhao Q; Tian Y; Liu D; Wu Q; Song XM
    J Colloid Interface Sci; 2022 Jul; 618():322-332. PubMed ID: 35349802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning Shell Numbers of Transition Metal Oxide Hollow Microspheres toward Durable and Superior Lithium Storage.
    Luo D; Deng YP; Wang X; Li G; Wu J; Fu J; Lei W; Liang R; Liu Y; Ding Y; Yu A; Chen Z
    ACS Nano; 2017 Nov; 11(11):11521-11530. PubMed ID: 29091401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-Dimensional π-Conjugated Frameworks as a Model System to Unveil a Multielectron-Transfer-Based Energy Storage Mechanism.
    Sakaushi K; Nishihara H
    Acc Chem Res; 2021 Aug; 54(15):3003-3015. PubMed ID: 33998232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superior Multielectron-Transferring Energy Storage by π-d Conjugated Frameworks.
    Xia D; Sakaushi K; Lyalin A; Wada K; Kumar S; Amores M; Maeda H; Sasaki S; Taketsugu T; Nishihara H
    Small; 2022 Aug; 18(33):e2202861. PubMed ID: 35766308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hierarchically Nanostructured Transition Metal Oxides for Lithium-Ion Batteries.
    Zheng M; Tang H; Li L; Hu Q; Zhang L; Xue H; Pang H
    Adv Sci (Weinh); 2018 Mar; 5(3):1700592. PubMed ID: 29593962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene oxide wrapped Cu
    Li M; Wei Z; Wang D; Zhang Z; Wang C; Chen G; Du F
    Nanotechnology; 2019 May; 30(18):184003. PubMed ID: 30645982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Can Multielectron Intercalation Reactions Be the Basis of Next Generation Batteries?
    Whittingham MS; Siu C; Ding J
    Acc Chem Res; 2018 Feb; 51(2):258-264. PubMed ID: 29327579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical Fabrication of Monolithic Electrodes with Core/Shell Sandwiched Transition Metal Oxide/Oxyhydroxide for High-Performance Energy Storage.
    Chang S; Pu J; Wang J; Du H; Zhou Q; Liu Z; Zhu C; Li J; Zhang H
    ACS Appl Mater Interfaces; 2016 Oct; 8(39):25888-25895. PubMed ID: 27607557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LiFe(MoO4)2 as a novel anode material for lithium-ion batteries.
    Chen N; Yao Y; Wang D; Wei Y; Bie X; Wang C; Chen G; Du F
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10661-6. PubMed ID: 24905851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatially resolved surface valence gradient and structural transformation of lithium transition metal oxides in lithium-ion batteries.
    Liu H; Bugnet M; Tessaro MZ; Harris KJ; Dunham MJ; Jiang M; Goward GR; Botton GA
    Phys Chem Chem Phys; 2016 Oct; 18(42):29064-29075. PubMed ID: 27711529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Lithium Ion Highway by Surface Coordination Polymerization: In Situ Growth of Metal-Organic Framework Thin Layers on Metal Oxides for Exceptional Rate and Cycling Performance.
    Han Y; Yu D; Zhou J; Xu P; Qi P; Wang Q; Li S; Fu X; Gao X; Jiang C; Feng X; Wang B
    Chemistry; 2017 Aug; 23(48):11513-11518. PubMed ID: 28707378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Triple-Confined Well-Dispersed Biactive NiCo
    Bai D; Wang F; Lv J; Zhang F; Xu S
    ACS Appl Mater Interfaces; 2016 Dec; 8(48):32853-32861. PubMed ID: 27934161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Double-Buffering Strategy to Boost the Lithium Storage of Botryoid MnO
    Yang C; Yao Y; Lian Y; Chen Y; Shah R; Zhao X; Chen M; Peng Y; Deng Z
    Small; 2019 Apr; 15(16):e1900015. PubMed ID: 30924269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interface-confined oxide nanostructures for catalytic oxidation reactions.
    Fu Q; Yang F; Bao X
    Acc Chem Res; 2013 Aug; 46(8):1692-701. PubMed ID: 23458033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-dimensional carbon-coated graphene/metal oxide hybrids for enhanced lithium storage.
    Su Y; Li S; Wu D; Zhang F; Liang H; Gao P; Cheng C; Feng X
    ACS Nano; 2012 Sep; 6(9):8349-56. PubMed ID: 22931096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional porous Co
    Xu Y; Wu C; Ao L; Jiang K; Shang L; Li Y; Hu Z; Chu J
    Nanotechnology; 2019 Oct; 30(42):425404. PubMed ID: 31386632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Something from nothing: enhancing electrochemical charge storage with cation vacancies.
    Hahn BP; Long JW; Rolison DR
    Acc Chem Res; 2013 May; 46(5):1181-91. PubMed ID: 22642490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hierarchical Structured Cu/Ni/TiO
    Yue Y; Juarez-Robles D; Chen Y; Ma L; Kuo WCH; Mukherjee P; Liang H
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28695-28703. PubMed ID: 28795573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.