BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 31508947)

  • 1. Rational Design of an Organocatalyst for Peptide Bond Formation.
    Handoko ; Satishkumar S; Panigrahi NR; Arora PS
    J Am Chem Soc; 2019 Oct; 141(40):15977-15985. PubMed ID: 31508947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-Component Redox Organocatalyst for Peptide Bond Formation.
    Handoko ; Panigrahi NR; Arora PS
    J Am Chem Soc; 2022 Mar; 144(8):3637-3643. PubMed ID: 35188383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iterative Design of a Biomimetic Catalyst for Amino Acid Thioester Condensation.
    Wu H; Handoko ; Raj M; Arora PS
    Org Lett; 2017 Oct; 19(19):5122-5125. PubMed ID: 28891652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient amidation from carboxylic acids and azides via selenocarboxylates: application to the coupling of amino acids and peptides with azides.
    Wu X; Hu L
    J Org Chem; 2007 Feb; 72(3):765-74. PubMed ID: 17253793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Harnessing and engineering amide bond forming ligases for the synthesis of amides.
    Winn M; Richardson SM; Campopiano DJ; Micklefield J
    Curr Opin Chem Biol; 2020 Apr; 55():77-85. PubMed ID: 32058241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inverse peptide synthesis via activated α-aminoesters.
    Suppo JS; Subra G; Bergès M; Marcia de Figueiredo R; Campagne JM
    Angew Chem Int Ed Engl; 2014 May; 53(21):5389-93. PubMed ID: 24757099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pH-Dependent peptide bond formation by the selective coupling of α-amino acids in water.
    Wu LF; Liu Z; Sutherland JD
    Chem Commun (Camb); 2021 Jan; 57(1):73-76. PubMed ID: 33242043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clickable coupling of carboxylic acids and amines at room temperature mediated by SO
    Wang SM; Zhao C; Zhang X; Qin HL
    Org Biomol Chem; 2019 Apr; 17(16):4087-4101. PubMed ID: 30957817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New heterocyclic beta-sheet ligands with peptidic recognition elements.
    Rzepecki P; Gallmeier H; Geib N; Cernovska K; König B; Schrader T
    J Org Chem; 2004 Aug; 69(16):5168-78. PubMed ID: 15287758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation, isolation, and characterization of Nalpha-Fmoc-peptide isocyanates: solution synthesis of oligo-alpha-peptidyl ureas.
    Sureshbabu VV; Patil BS; Venkataramanarao R
    J Org Chem; 2006 Sep; 71(20):7697-705. PubMed ID: 16995676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microwave-Assisted Catalytic Method for a Green Synthesis of Amides Directly from Amines and Carboxylic Acids.
    Zarecki AP; Kolanowski JL; Markiewicz WT
    Molecules; 2020 Apr; 25(8):. PubMed ID: 32290373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Triphenylphosphine-catalysed amide bond formation between carboxylic acids and amines.
    Lenstra DC; Rutjes FP; Mecinović J
    Chem Commun (Camb); 2014 Jun; 50(43):5763-6. PubMed ID: 24752820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient amide bond formation through a rapid and strong activation of carboxylic acids in a microflow reactor.
    Fuse S; Mifune Y; Takahashi T
    Angew Chem Int Ed Engl; 2014 Jan; 53(3):851-5. PubMed ID: 24402801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomimetic seleninates and selenonates.
    Abdo M; Knapp S
    J Am Chem Soc; 2008 Jul; 130(29):9234-5. PubMed ID: 18576651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of small tripeptide molecules through a catalysis sequence comprising metathesis and aminohydroxylation.
    Streuff J; Nieger M; Muñiz K
    Chemistry; 2006 May; 12(16):4362-71. PubMed ID: 16555360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Advances in the Metal-Catalyzed Activation of Amide Bonds.
    Chaudhari MB; Gnanaprakasam B
    Chem Asian J; 2019 Jan; 14(1):76-93. PubMed ID: 30426696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sulfonated reduced graphene oxide as a highly efficient catalyst for direct amidation of carboxylic acids with amines using ultrasonic irradiation.
    Mirza-Aghayan M; Tavana MM; Boukherroub R
    Ultrason Sonochem; 2016 Mar; 29():371-9. PubMed ID: 26585017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic Staudinger-Vilarrasa reaction for the direct ligation of carboxylic acids and azides.
    Burés J; Martín M; Urpí F; Vilarrasa J
    J Org Chem; 2009 Mar; 74(5):2203-6. PubMed ID: 19203231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developments in Synthetic Application of Selenium(IV) Oxide and Organoselenium Compounds as Oxygen Donors and Oxygen-Transfer Agents.
    Młochowski J; Wójtowicz-Młochowska H
    Molecules; 2015 Jun; 20(6):10205-43. PubMed ID: 26046320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct amidation of carboxylic acids catalyzed by ortho-iodo arylboronic acids: catalyst optimization, scope, and preliminary mechanistic study supporting a peculiar halogen acceleration effect.
    Gernigon N; Al-Zoubi RM; Hall DG
    J Org Chem; 2012 Oct; 77(19):8386-400. PubMed ID: 23013456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.