BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 31508947)

  • 21. Oxyma-based phosphates for racemization-free peptide segment couplings.
    Mitachi K; Kurosu YE; Hazlett BT; Kurosu M
    J Pept Sci; 2016 Mar; 22(3):186-91. PubMed ID: 26856693
    [TBL] [Abstract][Full Text] [Related]  

  • 22. One-pot mechanosynthesis of aromatic amides and dipeptides from carboxylic acids and amines.
    Štrukil V; Bartolec B; Portada T; Đilović I; Halasz I; Margetić D
    Chem Commun (Camb); 2012 Dec; 48(99):12100-2. PubMed ID: 23135220
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis of disulfides and diselenides by copper-catalyzed coupling reactions in water.
    Li Z; Ke F; Deng H; Xu H; Xiang H; Zhou X
    Org Biomol Chem; 2013 May; 11(18):2943-6. PubMed ID: 23538860
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Amide bond formation through iron-catalyzed oxidative amidation of tertiary amines with anhydrides.
    Li Y; Ma L; Jia F; Li Z
    J Org Chem; 2013 Jun; 78(11):5638-46. PubMed ID: 23668222
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Selective rhodium-catalyzed reduction of tertiary amides in amino acid esters and peptides.
    Das S; Li Y; Bornschein C; Pisiewicz S; Kiersch K; Michalik D; Gallou F; Junge K; Beller M
    Angew Chem Int Ed Engl; 2015 Oct; 54(42):12389-93. PubMed ID: 26189442
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Catalytic Oligopeptide Synthesis.
    Liu Z; Noda H; Shibasaki M; Kumagai N
    Org Lett; 2018 Feb; 20(3):612-615. PubMed ID: 29338248
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Use of Fmoc-N-(2-hydroxy-4-methoxybenzyl)amino acids in peptide synthesis.
    Zeng W; Regamey PO; Rose K; Wang Y; Bayer E
    J Pept Res; 1997 Mar; 49(3):273-9. PubMed ID: 9151261
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enzymatic Strategies for the Biosynthesis of N-Acyl Amino Acid Amides.
    Kua GKB; Nguyen GKT; Li Z
    Chembiochem; 2024 Feb; 25(4):e202300672. PubMed ID: 38051126
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis of peptides containing oxo amino acids and their crystallographic analysis.
    Kalita M; Archana A; Dimri A; Vasudev PG; Ramapanicker R
    J Pept Sci; 2019 Mar; 25(3):e3148. PubMed ID: 30697868
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Noncatalytic reaction of isonitriles and carboxylic acids en route to amide-type linkages.
    Li X; Danishefsky SJ
    Nat Protoc; 2008; 3(10):1666-70. PubMed ID: 18833204
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydroxymethyl Salicylaldehyde Auxiliary for a Glycine-Dependent Amide-Forming Ligation.
    Fouché M; Masse F; Roth HJ
    Org Lett; 2015 Oct; 17(20):4936-9. PubMed ID: 26425998
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Unexpected hydrolytic instability of N-acylated amino acid amides and peptides.
    Samaritoni JG; Copes AT; Crews DK; Glos C; Thompson AL; Wilson C; O'Donnell MJ; Scott WL
    J Org Chem; 2014 Apr; 79(7):3140-51. PubMed ID: 24617596
    [TBL] [Abstract][Full Text] [Related]  

  • 33. XtalFluor-E, an efficient coupling reagent for amidation of carboxylic acids.
    Orliac A; Gomez Pardo D; Bombrun A; Cossy J
    Org Lett; 2013 Feb; 15(4):902-5. PubMed ID: 23383604
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Selenourea-Thiourea Brønsted Acid Catalyst Facilitates Asymmetric Conjugate Additions of Amines to α,β-Unsaturated Esters.
    Lin Y; Hirschi WJ; Kunadia A; Paul A; Ghiviriga I; Abboud KA; Karugu RW; Vetticatt MJ; Hirschi JS; Seidel D
    J Am Chem Soc; 2020 Mar; 142(12):5627-5635. PubMed ID: 32118419
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis and disulfide structure determination of agelenin: identification of the carboxy-terminus as an amide form.
    Inui T; Hagiwara K; Nakajima K; Kimura T; Nakajima T; Sakakibara S
    Pept Res; 1992; 5(3):140-4. PubMed ID: 1421801
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rapid and scalable synthesis of innovative unnatural α,β or γ-amino acids functionalized with tertiary amines on their side-chains.
    Schneider S; Ftouni H; Niu S; Schmitt M; Simonin F; Bihel F
    Org Biomol Chem; 2015 Jul; 13(25):7020-6. PubMed ID: 26030164
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Formation of amide bonds without a condensation agent and implications for origin of life.
    Keller M; Blöchl E; Wächtershäuser G; Stetter KO
    Nature; 1994 Apr; 368(6474):836-8. PubMed ID: 8159243
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Iron-catalyzed oxidative amidation of tertiary amines with aldehydes.
    Li Y; Jia F; Li Z
    Chemistry; 2013 Jan; 19(1):82-6. PubMed ID: 23208956
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Amine Activation: "Inverse" Dipeptide Synthesis and Amide Function Formation through Activated Amino Compounds.
    Tosi E; Campagne JM; de Figueiredo RM
    J Org Chem; 2022 Sep; 87(18):12148-12163. PubMed ID: 36069394
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biohybrid -Se-S- coupling reactions of an amino acid derived seleninate.
    Abdo M; Sun Z; Knapp S
    Molecules; 2013 Feb; 18(2):1963-72. PubMed ID: 23381022
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.