These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 31509280)

  • 21. Spectroscopic and metal-binding properties of DF3: an artificial protein able to accommodate different metal ions.
    Torres Martin de Rosales R; Faiella M; Farquhar E; Que L; Andreozzi C; Pavone V; Maglio O; Nastri F; Lombardi A
    J Biol Inorg Chem; 2010 Jun; 15(5):717-28. PubMed ID: 20225070
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prediction of metal ion-binding sites in proteins using the fragment transformation method.
    Lu CH; Lin YF; Lin JJ; Yu CS
    PLoS One; 2012; 7(6):e39252. PubMed ID: 22723976
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermochemical properties and decomposition pathways of three isomeric semiquinone radicals.
    Altarawneh M; Dlugogorski BZ; Kennedy EM; Mackie JC
    J Phys Chem A; 2010 Jan; 114(2):1098-108. PubMed ID: 19954159
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ligand centered radical pathway in catechol oxidase activity with a trinuclear zinc-based model: synthesis, structural characterization and luminescence properties.
    Pal S; Chowdhury B; Patra M; Maji M; Biswas B
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jun; 144():148-54. PubMed ID: 25754390
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In situ reactivity of electrochemically generated semiquinone on Emodin and its Cu
    Mandal B; Mondal HK; Das S
    Biochem Biophys Res Commun; 2019 Jul; 515(3):505-509. PubMed ID: 31171362
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metals in proteins: correlation between the metal-ion type, coordination number and the amino-acid residues involved in the coordination.
    Dokmanić I; Sikić M; Tomić S
    Acta Crystallogr D Biol Crystallogr; 2008 Mar; 64(Pt 3):257-63. PubMed ID: 18323620
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evidence for an EPR-detectable semiquinone intermediate stabilized in the membrane-bound subunit NarI of nitrate reductase A (NarGHI) from Escherichia coli.
    Grimaldi S; Lanciano P; Bertrand P; Blasco F; Guigliarelli B
    Biochemistry; 2005 Feb; 44(4):1300-8. PubMed ID: 15667223
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design, folding, and activities of metal-assembled coiled coil proteins.
    Doerr AJ; McLendon GL
    Inorg Chem; 2004 Dec; 43(25):7916-25. PubMed ID: 15578825
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Retrostructural analysis of metalloproteins: application to the design of a minimal model for diiron proteins.
    Lombardi A; Summa CM; Geremia S; Randaccio L; Pavone V; DeGrado WF
    Proc Natl Acad Sci U S A; 2000 Jun; 97(12):6298-305. PubMed ID: 10841536
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Emergence of metal selectivity and promiscuity in metalloenzymes.
    Eom H; Song WJ
    J Biol Inorg Chem; 2019 Jun; 24(4):517-531. PubMed ID: 31115763
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Artificial Metalloproteins for Binding and Stabilization of a Semiquinone Radical.
    Ségaud N; Drienovská I; Chen J; Browne WR; Roelfes G
    Inorg Chem; 2017 Nov; 56(21):13293-13299. PubMed ID: 29027794
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Understanding and Modulating Metalloenzymes with Unnatural Amino Acids, Non-Native Metal Ions, and Non-Native Metallocofactors.
    Mirts EN; Bhagi-Damodaran A; Lu Y
    Acc Chem Res; 2019 Apr; 52(4):935-944. PubMed ID: 30912643
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessment of genotoxicity of catecholics using impedimetric DNA-biosensor.
    Ensafi AA; Amini M; Rezaei B
    Biosens Bioelectron; 2014 Mar; 53():43-50. PubMed ID: 24121207
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of METAL-ACTIVE SITE and ZINCCLUSTER tool to predict active site pockets.
    Ajitha M; Sundar K; Arul Mugilan S; Arumugam S
    Proteins; 2018 Mar; 86(3):322-331. PubMed ID: 29235146
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metal binding affinity and selectivity in metalloproteins: insights from computational studies.
    Dudev T; Lim C
    Annu Rev Biophys; 2008; 37():97-116. PubMed ID: 18573074
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Why zinc fingers prefer zinc: ligand-field symmetry and the hidden thermodynamics of metal ion selectivity.
    Lachenmann MJ; Ladbury JE; Dong J; Huang K; Carey P; Weiss MA
    Biochemistry; 2004 Nov; 43(44):13910-25. PubMed ID: 15518539
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Incorporating metals into de novo proteins.
    Peacock AF
    Curr Opin Chem Biol; 2013 Dec; 17(6):934-9. PubMed ID: 24183813
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural aspects of metal liganding to functional groups in proteins.
    Glusker JP
    Adv Protein Chem; 1991; 42():1-76. PubMed ID: 1793004
    [No Abstract]   [Full Text] [Related]  

  • 39. Equilibrium Studies of Designed Metalloproteins.
    Gibney BR
    Methods Enzymol; 2016; 580():417-38. PubMed ID: 27586343
    [TBL] [Abstract][Full Text] [Related]  

  • 40. De Novo Design of Four-Helix Bundle Metalloproteins: One Scaffold, Diverse Reactivities.
    Lombardi A; Pirro F; Maglio O; Chino M; DeGrado WF
    Acc Chem Res; 2019 May; 52(5):1148-1159. PubMed ID: 30973707
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.