BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 31509289)

  • 1. Knockdown of COPS3 inhibits the progress of prostate cancer through reducing phosphorylated p38 MAPK expression and impairs the epithelial-mesenchymal transition process.
    Zhu Z; Hong Y; Zhang F; An L; Yang Q; Huang X; Xu Q
    Prostate; 2019 Dec; 79(16):1823-1831. PubMed ID: 31509289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel oncogene COPS3 interacts with Beclin1 and Raf-1 to regulate metastasis of osteosarcoma through autophagy.
    Zhang F; Yan T; Guo W; Sun K; Wang S; Bao X; Liu K; Zheng B; Zhang H; Ren T
    J Exp Clin Cancer Res; 2018 Jul; 37(1):135. PubMed ID: 29970115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The involvement of FBP1 in prostate cancer cell epithelial mesenchymal transition, invasion and metastasis by regulating the MAPK signaling pathway.
    Zhang YP; Liu KL; Yang Z; Lu BS; Qi JC; Han ZW; Yin YW; Zhang M; Chen DM; Wang XW; Li W; Xin H
    Cell Cycle; 2019 Oct; 18(19):2432-2446. PubMed ID: 31448674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suppression of cathepsin a inhibits growth, migration, and invasion by inhibiting the p38 MAPK signaling pathway in prostate cancer.
    Park S; Kwon W; Park JK; Baek SM; Lee SW; Cho GJ; Ha YS; Lee JN; Kwon TG; Kim MO; Ryoo ZY; Han SH; Han JE; Choi SK
    Arch Biochem Biophys; 2020 Jul; 688():108407. PubMed ID: 32407712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sea cucumber extract TBL-12 inhibits the proliferation, migration, and invasion of human prostate cancer cells through the p38 mitogen-activated protein kinase and intrinsic caspase apoptosis pathway.
    Yuan L; Huang X; Zhou K; Zhu X; Huang B; Qiu S; Cao K; Xu L
    Prostate; 2019 Jun; 79(8):826-839. PubMed ID: 30889629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overexpression of COPS3 promotes clear cell renal cell carcinoma progression via regulation of Phospho-AKT(Thr308), Cyclin D1 and Caspase-3.
    Hong Y; Huang X; An L; Ye H; Ma K; Zhang F; Xu Q
    Exp Cell Res; 2018 Apr; 365(2):163-170. PubMed ID: 29477618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Upregulation of long non-coding RNA PlncRNA-1 promotes proliferation and induces epithelial-mesenchymal transition in prostate cancer.
    Jin Y; Cui Z; Li X; Jin X; Peng J
    Oncotarget; 2017 Apr; 8(16):26090-26099. PubMed ID: 28212533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silencing of the COPS3 gene by siRNA reduces proliferation of lung cancer cells most likely via induction of cell cycle arrest and apoptosis.
    Wang XM; Cui JW; Li W; Cai L; Song W; Wang GJ
    Asian Pac J Cancer Prev; 2012; 13(3):1043-8. PubMed ID: 22631635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. COPS3 inhibition promotes cell proliferation blockage and anoikis via regulating PFKFB3 in osteosarcoma cancer cells.
    Zhang F; Li Q; Zhang Y; Li N; Rao M; Li S; Ai Z; Yan S; Tian Z
    Eur J Pharmacol; 2023 Jul; 951():175799. PubMed ID: 37201626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNAi-mediated COPS3 gene silencing inhibits metastasis of osteogenic sarcoma cells.
    Yan T; Tang G; Ren T; Shen D; Sun K; Liang W; Guo W
    Cancer Gene Ther; 2011 Jun; 18(6):450-6. PubMed ID: 21436869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SNAI1 is critical for the aggressiveness of prostate cancer cells with low E-cadherin.
    Deep G; Jain AK; Ramteke A; Ting H; Vijendra KC; Gangar SC; Agarwal C; Agarwal R
    Mol Cancer; 2014 Feb; 13():37. PubMed ID: 24565133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting the SPOCK1-snail/slug axis-mediated epithelial-to-mesenchymal transition by apigenin contributes to repression of prostate cancer metastasis.
    Chien MH; Lin YW; Wen YC; Yang YC; Hsiao M; Chang JL; Huang HC; Lee WJ
    J Exp Clin Cancer Res; 2019 Jun; 38(1):246. PubMed ID: 31182131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mitogen-activated protein (MAP) kinases p38 and extracellular signal-regulated kinase (ERK) are involved in hepatocyte-mediated phenotypic switching in prostate cancer cells.
    Ma B; Wells A
    J Biol Chem; 2014 Apr; 289(16):11153-11161. PubMed ID: 24619413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of WNT10B in normal prostate gland development and prostate cancer.
    Madueke I; Hu WY; Hu D; Swanson SM; Vander Griend D; Abern M; Prins GS
    Prostate; 2019 Oct; 79(14):1692-1704. PubMed ID: 31433503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Over-expression of lipocalin 2 promotes cell migration and invasion through activating ERK signaling to increase SLUG expression in prostate cancer.
    Ding G; Fang J; Tong S; Qu L; Jiang H; Ding Q; Liu J
    Prostate; 2015 Jun; 75(9):957-68. PubMed ID: 25728945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide gene expression analysis of a murine model of prostate cancer progression: Deciphering the roles of IL-6 and p38 MAPK as potential therapeutic targets.
    Daouk R; Bahmad HF; Saleh E; Monzer A; Ballout F; Kadara H; Abou-Kheir W
    PLoS One; 2020; 15(8):e0237442. PubMed ID: 32790767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression and clinical significance of the nin one binding protein and p38 MAPK in prostate carcinoma.
    Che JP; Li W; Yan Y; Liu M; Wang GC; Li QY; Yang B; Yao XD; Zheng JH
    Int J Clin Exp Pathol; 2013; 6(11):2300-11. PubMed ID: 24228091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Down-regulation of E-cadherin enhances prostate cancer chemoresistance via Notch signaling.
    Wang W; Wang L; Mizokami A; Shi J; Zou C; Dai J; Keller ET; Lu Y; Zhang J
    Chin J Cancer; 2017 Mar; 36(1):35. PubMed ID: 28356132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AKR1C3, a crucial androgenic enzyme in prostate cancer, promotes epithelial-mesenchymal transition and metastasis through activating ERK signaling.
    Wang B; Gu Y; Hui K; Huang J; Xu S; Wu S; Li L; Fan J; Wang X; Hsieh JT; He D; Wu K
    Urol Oncol; 2018 Oct; 36(10):472.e11-472.e20. PubMed ID: 30139661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reciprocal regulation of long noncoding RNAs THBS4‑003 and THBS4 control migration and invasion in prostate cancer cell lines.
    Liu J; Cheng G; Yang H; Deng X; Qin C; Hua L; Yin C
    Mol Med Rep; 2016 Aug; 14(2):1451-8. PubMed ID: 27357608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.