BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 31509309)

  • 1. Methyl-Selective α-Oxygenation of Tertiary Amines to Formamides by Employing Copper/Moderately Hindered Nitroxyl Radical (DMN-AZADO or 1-Me-AZADO).
    Nakai S; Yatabe T; Suzuki K; Sasano Y; Iwabuchi Y; Hasegawa JY; Mizuno N; Yamaguchi K
    Angew Chem Int Ed Engl; 2019 Nov; 58(46):16651-16659. PubMed ID: 31509309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery and exploitation of AZADO: the highly active catalyst for alcohol oxidation.
    Iwabuchi Y
    Chem Pharm Bull (Tokyo); 2013; 61(12):1197-213. PubMed ID: 24292782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of an azanoradamantane-type nitroxyl radical catalyst for class-selective oxidation of alcohols.
    Doi R; Shibuya M; Murayama T; Yamamoto Y; Iwabuchi Y
    J Org Chem; 2015 Jan; 80(1):401-13. PubMed ID: 25474745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 2-azaadamantane N-oxyl (AZADO) and 1-Me-AZADO: highly efficient organocatalysts for oxidation of alcohols.
    Shibuya M; Tomizawa M; Suzuki I; Iwabuchi Y
    J Am Chem Soc; 2006 Jul; 128(26):8412-3. PubMed ID: 16802802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly efficient aerobic oxidation of alcohols by using less-hindered nitroxyl-radical/copper catalysis: optimum catalyst combinations and their substrate scope.
    Sasano Y; Kogure N; Nishiyama T; Nagasawa S; Iwabuchi Y
    Chem Asian J; 2015 Apr; 10(4):1004-9. PubMed ID: 25620279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SBA-15 Supported 1-Methyl-2-azaadamanane
    Tian Y; Guo X; Li M; Li C; Hu X; Jin L; Sun N; Hu B; Shen Z
    Org Lett; 2021 May; 23(10):3928-3932. PubMed ID: 33971715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient and selective Cu/nitroxyl-catalyzed methods for aerobic oxidative lactonization of diols.
    Xie X; Stahl SS
    J Am Chem Soc; 2015 Mar; 137(11):3767-70. PubMed ID: 25751494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CuCl/TMEDA/nor-AZADO-catalyzed aerobic oxidative acylation of amides with alcohols to produce imides.
    Kataoka K; Wachi K; Jin X; Suzuki K; Sasano Y; Iwabuchi Y; Hasegawa JY; Mizuno N; Yamaguchi K
    Chem Sci; 2018 Jun; 9(21):4756-4768. PubMed ID: 29910926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 9-Azanoradamantane N-oxyl (Nor-AZADO): a highly active organocatalyst for alcohol oxidation.
    Hayashi M; Sasano Y; Nagasawa S; Shibuya M; Iwabuchi Y
    Chem Pharm Bull (Tokyo); 2011; 59(12):1570-3. PubMed ID: 22130384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic insight into aerobic alcohol oxidation using NOx-nitroxide catalysis based on catalyst structure-activity relationships.
    Shibuya M; Nagasawa S; Osada Y; Iwabuchi Y
    J Org Chem; 2014 Nov; 79(21):10256-68. PubMed ID: 25286356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical reactions of highly active nitroxyl radicals with thiol compounds.
    Kumano M; Sugiyama K; Sato F; Komatsu S; Watanabe K; Ono T; Yoshida K; Sasano Y; Iwabuchi Y; Fujimura T; Kashiwagi Y; Sato K
    Anal Sci; 2023 Mar; 39(3):369-374. PubMed ID: 36576651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxygenation via C-H/C-C Bond Activation with Molecular Oxygen.
    Liang YF; Jiao N
    Acc Chem Res; 2017 Jul; 50(7):1640-1653. PubMed ID: 28636366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 2-Azaadamantane N-oxyl (AZADO)/Cu Catalysis Enables Chemoselective Aerobic Oxidation of Alcohols Containing Electron-Rich Divalent Sulfur Functionalities.
    Sasano Y; Kogure N; Nagasawa S; Kasabata K; Iwabuchi Y
    Org Lett; 2018 Oct; 20(19):6104-6107. PubMed ID: 30226058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemoselective Conversion from α-Hydroxy Acids to α-Keto Acids Enabled by Nitroxyl-Radical-Catalyzed Aerobic Oxidation.
    Furukawa K; Inada H; Shibuya M; Yamamoto Y
    Org Lett; 2016 Sep; 18(17):4230-3. PubMed ID: 27533283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supported Gold Nanoparticles for Efficient α-Oxygenation of Secondary and Tertiary Amines into Amides.
    Jin X; Kataoka K; Yatabe T; Yamaguchi K; Mizuno N
    Angew Chem Int Ed Engl; 2016 Jun; 55(25):7212-7. PubMed ID: 27151621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radical Dimerization in a Plastic Organic Crystal Leads to Structural and Magnetic Bistability with Wide Thermal Hysteresis.
    Dragulescu-Andrasi A; Filatov AS; Oakley RT; Li X; Lekin K; Huq A; Pak C; Greer SM; McKay J; Jo M; Lengyel J; Hung I; Maradzike E; DePrince AE; Stoian SA; Hill S; Hu YY; Shatruk M
    J Am Chem Soc; 2019 Nov; 141(45):17989-17994. PubMed ID: 31661269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cu/Nitroxyl Catalyzed Aerobic Oxidation of Primary Amines into Nitriles at Room Temperature.
    Kim J; Stahl SS
    ACS Catal; 2013 Jul; 3(7):1652-1656. PubMed ID: 24015373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthetic applications of nonmetal catalysts for homogeneous oxidations.
    Adam W; Saha-Möller CR; Ganeshpure PA
    Chem Rev; 2001 Nov; 101(11):3499-548. PubMed ID: 11840992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stable Bicyclic Functionalized Nitroxides: The Synthesis of Derivatives of Aza-nortropinone-5-Methyl-3-oxo-6,8-diazabicyclo[3.2.1]-6-octene 8-oxyls.
    Grigor'eva LN; Tikhonov AY; Lomanovich KA; Mazhukin DG
    Molecules; 2021 May; 26(10):. PubMed ID: 34065372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrocatalytic Alcohol Oxidation with TEMPO and Bicyclic Nitroxyl Derivatives: Driving Force Trumps Steric Effects.
    Rafiee M; Miles KC; Stahl SS
    J Am Chem Soc; 2015 Nov; 137(46):14751-7. PubMed ID: 26505317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.