These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 31509380)

  • 1. Critical Comparison of the Superoxide Dismutase-like Activity of Carbon Antioxidant Nanozymes by Direct Superoxide Consumption Kinetic Measurements.
    Wu G; Berka V; Derry PJ; Mendoza K; Kakadiaris E; Roy T; Kent TA; Tour JM; Tsai AL
    ACS Nano; 2019 Oct; 13(10):11203-11213. PubMed ID: 31509380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly efficient conversion of superoxide to oxygen using hydrophilic carbon clusters.
    Samuel EL; Marcano DC; Berka V; Bitner BR; Wu G; Potter A; Fabian RH; Pautler RG; Kent TA; Tsai AL; Tour JM
    Proc Natl Acad Sci U S A; 2015 Feb; 112(8):2343-8. PubMed ID: 25675492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A biologically effective fullerene (C60) derivative with superoxide dismutase mimetic properties.
    Ali SS; Hardt JI; Quick KL; Kim-Han JS; Erlanger BF; Huang TT; Epstein CJ; Dugan LL
    Free Radic Biol Med; 2004 Oct; 37(8):1191-202. PubMed ID: 15451059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perylene Diimide as a Precise Graphene-like Superoxide Dismutase Mimetic.
    Jalilov AS; Nilewski LG; Berka V; Zhang C; Yakovenko AA; Wu G; Kent TA; Tsai AL; Tour JM
    ACS Nano; 2017 Feb; 11(2):2024-2032. PubMed ID: 28112896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly Oxidized Graphene Quantum Dots from Coal as Efficient Antioxidants.
    Nilewski L; Mendoza K; Jalilov AS; Berka V; Wu G; Sikkema WKA; Metzger A; Ye R; Zhang R; Luong DX; Wang T; McHugh E; Derry PJ; Samuel EL; Kent TA; Tsai AL; Tour JM
    ACS Appl Mater Interfaces; 2019 May; 11(18):16815-16821. PubMed ID: 30995006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuronal uptake of nanoformulated superoxide dismutase and attenuation of angiotensin II-dependent hypertension after central administration.
    Savalia K; Manickam DS; Rosenbaugh EG; Tian J; Ahmad IM; Kabanov AV; Zimmerman MC
    Free Radic Biol Med; 2014 Aug; 73():299-307. PubMed ID: 24924945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactions of superoxide dismutases with HS(-)/H2S and superoxide radical anion: An in vitro EPR study.
    Bolić B; Mijušković A; Popović-Bijelić A; Nikolić-Kokić A; Spasić S; Blagojević D; Spasić MB; Spasojević I
    Nitric Oxide; 2015 Dec; 51():19-23. PubMed ID: 26436856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative kinetic study between native and chemically modified Cu,Zn superoxide dismutases.
    Argese E; Girotto R; Orsega EF
    Biochem J; 1993 Jun; 292 ( Pt 2)(Pt 2):451-5. PubMed ID: 8503879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidized Activated Charcoal Nanozymes: Synthesis, and Optimization for In Vitro and In Vivo Bioactivity for Traumatic Brain Injury.
    McHugh EA; Liopo AV; Mendoza K; Robertson CS; Wu G; Wang Z; Chen W; Beckham JL; Derry PJ; Kent TA; Tour JM
    Adv Mater; 2024 Mar; 36(10):e2211239. PubMed ID: 36940058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-Functionalized Fullerenes and Endofullerenes in Aqueous Dispersions as Superoxide Scavengers.
    Mikheev IV; Sozarukova MM; Proskurnina EV; Kareev IE; Proskurnin MA
    Molecules; 2020 May; 25(11):. PubMed ID: 32481516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photodynamic Antitumor Activity of Fullerene Modified with Poly(ethylene glycol) with Different Molecular Weights and Terminal Structures.
    Liu J; Tabata Y
    J Biomater Sci Polym Ed; 2011; 22(1-3):297-312. PubMed ID: 20557714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic pathway of manganese superoxide dismutase by direct observation of superoxide.
    Silverman DN; Nick HS
    Methods Enzymol; 2002; 349():61-74. PubMed ID: 11912930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical characterization of a membrane-bound manganese-containing superoxide dismutase from the cyanobacterium Anabaena PCC 7120.
    Regelsberger G; Atzenhofer W; Ruker F; Peschek GA; Jakopitsch C; Paumann M; Furtmüller PG; Obinger C
    J Biol Chem; 2002 Nov; 277(46):43615-22. PubMed ID: 12215453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stopped-flow kinetic analysis for monitoring superoxide decay in aqueous systems.
    Riley DP; Rivers WJ; Weiss RH
    Anal Biochem; 1991 Aug; 196(2):344-9. PubMed ID: 1663709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative computational study of interaction of C60-fullerene and tris-malonyl-C60-fullerene isomers with lipid bilayer: relation to their antioxidant effect.
    Bozdaganyan ME; Orekhov PS; Shaytan AK; Shaitan KV
    PLoS One; 2014; 9(7):e102487. PubMed ID: 25019215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superoxide dismutase nanozymes: an emerging star for anti-oxidation.
    Zhao H; Zhang R; Yan X; Fan K
    J Mater Chem B; 2021 Sep; 9(35):6939-6957. PubMed ID: 34161407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Synthesis of cationic manganese porphyrin bearing alkylsulfonio groups and evaluation of their antioxidant activities].
    Yuasa M; Oyaizu K; Murata H; Komuro M; Awa R; Ohkubo A
    J Oleo Sci; 2007; 56(2):95-101. PubMed ID: 17898469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High catalytic activity of dendritic C60 monoadducts in metal-free superoxide dismutation.
    Liu GF; Filipović M; Ivanović-Burmazović I; Beuerle F; Witte P; Hirsch A
    Angew Chem Int Ed Engl; 2008; 47(21):3991-4. PubMed ID: 18407558
    [No Abstract]   [Full Text] [Related]  

  • 19. The pH-dependent changes of the enzymic activity and spectroscopic properties of iron-substituted manganese superoxide dismutase. A study on the metal-specific activity of Mn-containing superoxide dismutase.
    Yamakura F; Kobayashi K; Ue H; Konno M
    Eur J Biochem; 1995 Feb; 227(3):700-6. PubMed ID: 7867628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemistry of immobilized CuZnSOD and FeSOD and their interaction with superoxide radicals.
    Ge B; Scheller FW; Lisdat F
    Biosens Bioelectron; 2003 Mar; 18(2-3):295-302. PubMed ID: 12485776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.