These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 31509409)

  • 1. Role of Displacing Confined Solvent in the Conformational Equilibrium of β-Cyclodextrin.
    He P; Sarkar S; Gallicchio E; Kurtzman T; Wickstrom L
    J Phys Chem B; 2019 Oct; 123(40):8378-8386. PubMed ID: 31509409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Grid inhomogeneous solvation theory: hydration structure and thermodynamics of the miniature receptor cucurbit[7]uril.
    Nguyen CN; Young TK; Gilson MK
    J Chem Phys; 2012 Jul; 137(4):044101. PubMed ID: 22852591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computing conformational free energy differences in explicit solvent: An efficient thermodynamic cycle using an auxiliary potential and a free energy functional constructed from the end points.
    Harris RC; Deng N; Levy RM; Ishizuka R; Matubayasi N
    J Comput Chem; 2017 Jun; 38(15):1198-1208. PubMed ID: 28008630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generalized Born Implicit Solvent Models for Biomolecules.
    Onufriev AV; Case DA
    Annu Rev Biophys; 2019 May; 48():275-296. PubMed ID: 30857399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of implicit modeling of nonpolar solvation on protein folding simulations.
    Shao Q; Zhu W
    Phys Chem Chem Phys; 2018 Jul; 20(27):18410-18419. PubMed ID: 29946610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Connecting free energy surfaces in implicit and explicit solvent: an efficient method to compute conformational and solvation free energies.
    Deng N; Zhang BW; Levy RM
    J Chem Theory Comput; 2015 Jun; 11(6):2868-78. PubMed ID: 26236174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of Implicit and Explicit Solvation Models for Iota-Cyclodextrin Conformation Analysis from Replica Exchange Molecular Dynamics.
    Khuntawee W; Kunaseth M; Rungnim C; Intagorn S; Wolschann P; Kungwan N; Rungrotmongkol T; Hannongbua S
    J Chem Inf Model; 2017 Apr; 57(4):778-786. PubMed ID: 28271890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discrimination between native and intentionally misfolded conformations of proteins: ES/IS, a new method for calculating conformational free energy that uses both dynamics simulations with an explicit solvent and an implicit solvent continuum model.
    Vorobjev YN; Almagro JC; Hermans J
    Proteins; 1998 Sep; 32(4):399-413. PubMed ID: 9726412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accuracy comparison of several common implicit solvent models and their implementations in the context of protein-ligand binding.
    Katkova EV; Onufriev AV; Aguilar B; Sulimov VB
    J Mol Graph Model; 2017 Mar; 72():70-80. PubMed ID: 28064081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generalized Born and Explicit Solvent Models for Free Energy Calculations in Organic Solvents: Cyclodextrin Dimerization.
    Zhang H; Tan T; van der Spoel D
    J Chem Theory Comput; 2015 Nov; 11(11):5103-13. PubMed ID: 26574308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supramolecular aggregates of oligosaccharides with co-solvents in ternary systems for the solubilizing approach of triamcinolone.
    de Medeiros ASA; Zoppi A; Barbosa EG; Oliveira JIN; Fernandes-Pedrosa MF; Longhi MR; da Silva-Júnior AA
    Carbohydr Polym; 2016 Oct; 151():1040-1051. PubMed ID: 27474653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Confinement of polar solvents within beta-cyclodextrins.
    Rodriguez J; Rico DH; Domenianni L; Laria D
    J Phys Chem B; 2008 Jun; 112(25):7522-9. PubMed ID: 18528977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards understanding the unbound state of drug compounds: Implications for the intramolecular reorganization energy upon binding.
    Foloppe N; Chen IJ
    Bioorg Med Chem; 2016 May; 24(10):2159-89. PubMed ID: 27061672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between Solvation Thermodynamics from IST and DFT Perspectives.
    Levy RM; Cui D; Zhang BW; Matubayasi N
    J Phys Chem B; 2017 Apr; 121(15):3825-3841. PubMed ID: 28186751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solvation forces on biomolecular structures: a comparison of explicit solvent and Poisson-Boltzmann models.
    Wagoner J; Baker NA
    J Comput Chem; 2004 Oct; 25(13):1623-9. PubMed ID: 15264256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate predictions of nonpolar solvation free energies require explicit consideration of binding-site hydration.
    Genheden S; Mikulskis P; Hu L; Kongsted J; Söderhjelm P; Ryde U
    J Am Chem Soc; 2011 Aug; 133(33):13081-92. PubMed ID: 21728337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solvent induced conformational fluctuation of alanine dipeptide studied by using vibrational probes.
    Cai K; Du F; Liu J; Su T
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 137():701-10. PubMed ID: 25260065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computations of Absolute Solvation Free Energies of Small Molecules Using Explicit and Implicit Solvent Model.
    Shivakumar D; Deng Y; Roux B
    J Chem Theory Comput; 2009 Apr; 5(4):919-30. PubMed ID: 26609601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Communication: Free-energy analysis of hydration effect on protein with explicit solvent: equilibrium fluctuation of cytochrome c.
    Karino Y; Matubayasi N
    J Chem Phys; 2011 Jan; 134(4):041105. PubMed ID: 21280680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Empirical solvation models in the context of conformational energy searches: application to bovine pancreatic trypsin inhibitor.
    Williams RL; Vila J; Perrot G; Scheraga HA
    Proteins; 1992 Sep; 14(1):110-9. PubMed ID: 1384032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.