These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 31509419)

  • 1. Protein Dynamics from Accurate Low-Field Site-Specific Longitudinal and Transverse Nuclear Spin Relaxation.
    Kadeřávek P; Bolik-Coulon N; Cousin SF; Marquardsen T; Tyburn JM; Dumez JN; Ferrage F
    J Phys Chem Lett; 2019 Oct; 10(19):5917-5922. PubMed ID: 31509419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How wide is the window opened by high-resolution relaxometry on the internal dynamics of proteins in solution?
    Smith AA; Bolik-Coulon N; Ernst M; Meier BH; Ferrage F
    J Biomol NMR; 2021 Mar; 75(2-3):119-131. PubMed ID: 33759077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of Protein ps-ns Motions by High-Resolution Relaxometry.
    Cousin SF; Kadeřávek P; Bolik-Coulon N; Ferrage F
    Methods Mol Biol; 2018; 1688():169-203. PubMed ID: 29151210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-resolution field-cycling NMR studies of a DNA octamer as a probe of phosphodiester dynamics and comparison with computer simulation.
    Roberts MF; Cui Q; Turner CJ; Case DA; Redfield AG
    Biochemistry; 2004 Mar; 43(12):3637-50. PubMed ID: 15035634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanosecond time scale motions in proteins revealed by high-resolution NMR relaxometry.
    Charlier C; Khan SN; Marquardsen T; Pelupessy P; Reiss V; Sakellariou D; Bodenhausen G; Engelke F; Ferrage F
    J Am Chem Soc; 2013 Dec; 135(49):18665-72. PubMed ID: 24228712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational flexibility of a microcrystalline globular protein: order parameters by solid-state NMR spectroscopy.
    Lorieau JL; McDermott AE
    J Am Chem Soc; 2006 Sep; 128(35):11505-12. PubMed ID: 16939274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Longitudinal (1)H relaxation optimization in TROSY NMR spectroscopy.
    Pervushin K; Vögeli B; Eletsky A
    J Am Chem Soc; 2002 Oct; 124(43):12898-902. PubMed ID: 12392438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Boosting the resolution of low-field [Formula: see text] relaxation experiments on intrinsically disordered proteins with triple-resonance NMR.
    Jaseňáková Z; Zapletal V; Padrta P; Zachrdla M; Bolik-Coulon N; Marquardsen T; Tyburn JM; Žídek L; Ferrage F; Kadeřávek P
    J Biomol NMR; 2020 Mar; 74(2-3):139-145. PubMed ID: 31960224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unraveling the complexity of protein backbone dynamics with combined (13)C and (15)N solid-state NMR relaxation measurements.
    Lamley JM; Lougher MJ; Sass HJ; Rogowski M; Grzesiek S; Lewandowski JR
    Phys Chem Chem Phys; 2015 Sep; 17(34):21997-2008. PubMed ID: 26234369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proton-decoupled CPMG: a better experiment for measuring (15)N R2 relaxation in disordered proteins.
    Yuwen T; Skrynnikov NR
    J Magn Reson; 2014 Apr; 241():155-69. PubMed ID: 24120537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TROSY pulse sequence for simultaneous measurement of the
    O'Brien PA; Palmer AG
    J Biomol NMR; 2018 Apr; 70(4):205-209. PubMed ID: 29663108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ¹³C relaxation experiments for aromatic side chains employing longitudinal- and transverse-relaxation optimized NMR spectroscopy.
    Weininger U; Diehl C; Akke M
    J Biomol NMR; 2012 Jul; 53(3):181-90. PubMed ID: 22752933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of nano-second internal motion and determination of overall tumbling times independent of the time scale of internal motion in proteins from NMR relaxation data.
    Larsson G; Martinez G; Schleucher J; Wijmenga SS
    J Biomol NMR; 2003 Dec; 27(4):291-312. PubMed ID: 14512728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cross-Correlated Relaxation of Dipolar Coupling and Chemical-Shift Anisotropy in Magic-Angle Spinning R1ρ NMR Measurements: Application to Protein Backbone Dynamics Measurements.
    Kurauskas V; Weber E; Hessel A; Ayala I; Marion D; Schanda P
    J Phys Chem B; 2016 Sep; 120(34):8905-13. PubMed ID: 27500976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing protein side chain dynamics via 13C NMR relaxation.
    Yang D
    Protein Pept Lett; 2011 Apr; 18(4):380-95. PubMed ID: 21222636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast evaluation of protein dynamics from deficient
    Jaremko Ł; Jaremko M; Ejchart A; Nowakowski M
    J Biomol NMR; 2018 Apr; 70(4):219-228. PubMed ID: 29594733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics and NMR spin relaxation in proteins.
    Case DA
    Acc Chem Res; 2002 Jun; 35(6):325-31. PubMed ID: 12069616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reducing bias in the analysis of solution-state NMR data with dynamics detectors.
    Smith AA; Ernst M; Meier BH; Ferrage F
    J Chem Phys; 2019 Jul; 151(3):034102. PubMed ID: 31325945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microsecond motions probed by near-rotary-resonance R
    Krushelnitsky A; Gauto D; Rodriguez Camargo DC; Schanda P; Saalwächter K
    J Biomol NMR; 2018 May; 71(1):53-67. PubMed ID: 29845494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exceeding the limit of dynamics studies on biomolecules using high spin-lock field strengths with a cryogenically cooled probehead.
    Ban D; Gossert AD; Giller K; Becker S; Griesinger C; Lee D
    J Magn Reson; 2012 Aug; 221():1-4. PubMed ID: 22743535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.