These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 31509473)

  • 1. Sensory enhancement amplifies interlimb cutaneous reflexes in wrist extensor muscles.
    Sun Y; Zehr EP
    J Neurophysiol; 2019 Nov; 122(5):2085-2094. PubMed ID: 31509473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced somatosensory feedback modulates cutaneous reflexes in arm muscles during self-triggered or prolonged stimulation.
    Sun Y; Pearcey GEP; Zehr EP
    Exp Brain Res; 2020 Feb; 238(2):295-304. PubMed ID: 31897517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of enhanced cutaneous sensory input on interlimb strength transfer of the wrist extensors.
    Barss TS; Klarner T; Sun Y; Inouye K; Zehr EP
    Physiol Rep; 2020 Mar; 8(6):e14406. PubMed ID: 32222042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of wrist position on reciprocal inhibition and cutaneous reflex amplitudes in forearm muscles.
    Sun Y; Zehr EP
    Neurosci Lett; 2018 Jun; 677():37-43. PubMed ID: 29684529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The amplitude of interlimb cutaneous reflexes in the leg is influenced by fingertip touch and vision during treadmill locomotion.
    Forero J; Misiaszek JE
    Exp Brain Res; 2015 Jun; 233(6):1773-82. PubMed ID: 25788011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interlimb Reflexes Induced by Electrical Stimulation of Cutaneous Nerves after Spinal Cord Injury.
    Butler JE; Godfrey S; Thomas CK
    PLoS One; 2016; 11(4):e0153063. PubMed ID: 27049521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human interlimb reflexes evoked by electrical stimulation of cutaneous nerves innervating the hand and foot.
    Zehr EP; Collins DF; Chua R
    Exp Brain Res; 2001 Oct; 140(4):495-504. PubMed ID: 11685403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plantarflexion force is amplified with sensory stimulation during ramping submaximal isometric contractions.
    Pearcey GEP; Sun Y; Zehr EP
    J Neurophysiol; 2020 Apr; 123(4):1427-1438. PubMed ID: 32159422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Persistence of locomotor-related interlimb reflex networks during walking after stroke.
    Zehr EP; Loadman PM
    Clin Neurophysiol; 2012 Apr; 123(4):796-807. PubMed ID: 21945456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amplification of interlimb reflexes evoked by stimulating the hand simultaneously with conditioning from the foot during locomotion.
    Nakajima T; Barss T; Klarner T; Komiyama T; Zehr EP
    BMC Neurosci; 2013 Mar; 14():28. PubMed ID: 23497331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interlimb neural interactions in corticospinal and spinal reflex circuits during preparation and execution of isometric elbow flexion.
    Sasaki A; Kaneko N; Masugi Y; Milosevic M; Nakazawa K
    J Neurophysiol; 2020 Sep; 124(3):652-667. PubMed ID: 32697605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changing coupling between the arms and legs with slow walking speeds alters regulation of somatosensory feedback.
    Klarner T; Pearcey GEP; Sun Y; Barss TS; Zehr EP
    Exp Brain Res; 2020 May; 238(5):1335-1349. PubMed ID: 32333034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rhythmic arm cycling training improves walking and neurophysiological integrity in chronic stroke: the arms can give legs a helping hand in rehabilitation.
    Kaupp C; Pearcey GEP; Klarner T; Sun Y; Cullen H; Barss TS; Zehr EP
    J Neurophysiol; 2018 Mar; 119(3):1095-1112. PubMed ID: 29212917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulations of interlimb and intralimb cutaneous reflexes during simultaneous arm and leg cycling in humans.
    Sakamoto M; Endoh T; Nakajima T; Tazoe T; Shiozawa S; Komiyama T
    Clin Neurophysiol; 2006 Jun; 117(6):1301-11. PubMed ID: 16651023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural control of rhythmic, cyclical human arm movement: task dependency, nerve specificity and phase modulation of cutaneous reflexes.
    Zehr EP; Kido A
    J Physiol; 2001 Dec; 537(Pt 3):1033-45. PubMed ID: 11744775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facilitation of soleus H-reflex amplitude evoked by cutaneous nerve stimulation at the wrist is not suppressed by rhythmic arm movement.
    Zehr EP; Frigon A; Hoogenboom N; Collins DF
    Exp Brain Res; 2004 Dec; 159(3):382-8. PubMed ID: 15480593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in intracortical excitability induced by stimulation of wrist afferents in man.
    Aimonetti JM; Nielsen JB
    J Physiol; 2001 Aug; 534(Pt 3):891-902. PubMed ID: 11483718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coordinated interlimb compensatory responses to electrical stimulation of cutaneous nerves in the hand and foot during walking.
    Haridas C; Zehr EP
    J Neurophysiol; 2003 Nov; 90(5):2850-61. PubMed ID: 12853441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reflex connections from forearm and hand afferents to shoulder girdle muscles in humans.
    Alexander CM; Harrison PJ
    Exp Brain Res; 2003 Feb; 148(3):277-82. PubMed ID: 12541138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Context-dependent modulation of interlimb cutaneous reflexes in arm muscles as a function of stability threat during walking.
    Haridas C; Zehr EP; Misiaszek JE
    J Neurophysiol; 2006 Dec; 96(6):3096-103. PubMed ID: 17005610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.