BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 31509522)

  • 1. Role of dynamic nuclear deformation on genomic architecture reorganization.
    Seirin-Lee S; Osakada F; Takeda J; Tashiro S; Kobayashi R; Yamamoto T; Ochiai H
    PLoS Comput Biol; 2019 Sep; 15(9):e1007289. PubMed ID: 31509522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new application of the phase-field method for understanding the mechanisms of nuclear architecture reorganization.
    Lee SS; Tashiro S; Awazu A; Kobayashi R
    J Math Biol; 2017 Jan; 74(1-2):333-354. PubMed ID: 27241726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution.
    Solovei I; Kreysing M; Lanctôt C; Kösem S; Peichl L; Cremer T; Guck J; Joffe B
    Cell; 2009 Apr; 137(2):356-68. PubMed ID: 19379699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inverted nuclear architecture and its development during differentiation of mouse rod photoreceptor cells: a new model to study nuclear architecture.
    Solovei I; Joffe B
    Genetika; 2010 Sep; 46(9):1159-63. PubMed ID: 21058510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Downregulation of STAT3 activation is required for presumptive rod photoreceptor cells to differentiate in the postnatal retina.
    Ozawa Y; Nakao K; Shimazaki T; Takeda J; Akira S; Ishihara K; Hirano T; Oguchi Y; Okano H
    Mol Cell Neurosci; 2004 Jun; 26(2):258-70. PubMed ID: 15207851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Special characteristics of the transcription and splicing machinery in photoreceptor cells of the mammalian retina.
    Derlig K; Giessl A; Brandstätter JH; Enz R; Dahlhaus R
    Cell Tissue Res; 2015 Nov; 362(2):281-94. PubMed ID: 26013685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The nucleus inside out--through a rod darkly.
    Ragoczy T; Groudine M
    Cell; 2009 Apr; 137(2):205-7. PubMed ID: 19379685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. IGF-1 produced by cone photoreceptors regulates rod progenitor proliferation in the teleost retina.
    Zygar CA; Colbert S; Yang D; Fernald RD
    Brain Res Dev Brain Res; 2005 Jan; 154(1):91-100. PubMed ID: 15617759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of vesicular glutamate transporter 1 in the mouse retina reveals temporal ordering in development of rod vs. cone and ON vs. OFF circuits.
    Sherry DM; Wang MM; Bates J; Frishman LJ
    J Comp Neurol; 2003 Oct; 465(4):480-98. PubMed ID: 12975811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytokine-induced activation of signal transducer and activator of transcription in photoreceptor precursors regulates rod differentiation in the developing mouse retina.
    Rhee KD; Goureau O; Chen S; Yang XJ
    J Neurosci; 2004 Nov; 24(44):9779-88. PubMed ID: 15525763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased proliferation of late-born retinal progenitor cells by gestational lead exposure delays rod and bipolar cell differentiation.
    Chaney SY; Mukherjee S; Giddabasappa A; Rueda EM; Hamilton WR; Johnson JE; Fox DA
    Mol Vis; 2016; 22():1468-1489. PubMed ID: 28050121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Knockout of Nr2e3 prevents rod photoreceptor differentiation and leads to selective L-/M-cone photoreceptor degeneration in zebrafish.
    Xie S; Han S; Qu Z; Liu F; Li J; Yu S; Reilly J; Tu J; Liu X; Lu Z; Hu X; Yimer TA; Qin Y; Huang Y; Lv Y; Jiang T; Shu X; Tang Z; Jia H; Wong F; Liu M
    Biochim Biophys Acta Mol Basis Dis; 2019 Jun; 1865(6):1273-1283. PubMed ID: 30684641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The CNTF/LIF signaling pathway regulates developmental programmed cell death and differentiation of rod precursor cells in the mouse retina in vivo.
    Elliott J; Cayouette M; Gravel C
    Dev Biol; 2006 Dec; 300(2):583-98. PubMed ID: 17054938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Viewing Nuclear Architecture through the Eyes of Nocturnal Mammals.
    Feodorova Y; Falk M; Mirny LA; Solovei I
    Trends Cell Biol; 2020 Apr; 30(4):276-289. PubMed ID: 31980345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A diffusible factor from normal retinal cells promotes rod photoreceptor survival in an in vitro model of retinitis pigmentosa.
    Streichert LC; Birnbach CD; Reh TA
    J Neurobiol; 1999 Jun; 39(4):475-90. PubMed ID: 10380070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global chromatin relabeling accompanies spatial inversion of chromatin in rod photoreceptors.
    Smith CL; Lan Y; Jain R; Epstein JA; Poleshko A
    Sci Adv; 2021 Sep; 7(39):eabj3035. PubMed ID: 34559565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and functional remodeling in the retina of a mouse with a photoreceptor synaptopathy: plasticity in the rod and degeneration in the cone system.
    Specht D; Tom Dieck S; Ammermüller J; Regus-Leidig H; Gundelfinger ED; Brandstätter JH
    Eur J Neurosci; 2007 Nov; 26(9):2506-15. PubMed ID: 17970721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein kinase C regulates rod photoreceptor differentiation through modulation of STAT3 signaling.
    Pinzon-Guzman C; Shaomin Zhang S; Barnstable CJ
    Adv Exp Med Biol; 2010; 664():21-8. PubMed ID: 20237998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patterns of cell proliferation and rod photoreceptor differentiation in shark retinas.
    Ferreiro-Galve S; Rodríguez-Moldes I; Anadón R; Candal E
    J Chem Neuroanat; 2010 Jan; 39(1):1-14. PubMed ID: 19822206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Casz1 controls higher-order nuclear organization in rod photoreceptors.
    Mattar P; Stevanovic M; Nad I; Cayouette M
    Proc Natl Acad Sci U S A; 2018 Aug; 115(34):E7987-E7996. PubMed ID: 30072429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.