These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 31509543)
1. A plant biostimulant made from the marine brown algae Ascophyllum nodosum and chitosan reduce Fusarium head blight and mycotoxin contamination in wheat. Gunupuru LR; Patel JS; Sumarah MW; Renaud JB; Mantin EG; Prithiviraj B PLoS One; 2019; 14(9):e0220562. PubMed ID: 31509543 [TBL] [Abstract][Full Text] [Related]
3. The impact of chitosan on the early metabolomic response of wheat to infection by Fusarium graminearum. Deshaies M; Lamari N; Ng CKY; Ward P; Doohan FM BMC Plant Biol; 2022 Feb; 22(1):73. PubMed ID: 35183130 [TBL] [Abstract][Full Text] [Related]
4. Application of chitosan and chitosan nanoparticles for the control of Fusarium head blight of wheat (Fusarium graminearum) in vitro and greenhouse. Kheiri A; Moosawi Jorf SA; Malihipour A; Saremi H; Nikkhah M Int J Biol Macromol; 2016 Dec; 93(Pt A):1261-1272. PubMed ID: 27664927 [TBL] [Abstract][Full Text] [Related]
5. Synthesis and characterization of chitosan nanoparticles and their effect on Fusarium head blight and oxidative activity in wheat. Kheiri A; Moosawi Jorf SA; Malihipour A; Saremi H; Nikkhah M Int J Biol Macromol; 2017 Sep; 102():526-538. PubMed ID: 28414109 [TBL] [Abstract][Full Text] [Related]
6. Effect of salicylic acid on Fusarium graminearum, the major causal agent of fusarium head blight in wheat. Qi PF; Johnston A; Balcerzak M; Rocheleau H; Harris LJ; Long XY; Wei YM; Zheng YL; Ouellet T Fungal Biol; 2012 Mar; 116(3):413-26. PubMed ID: 22385623 [TBL] [Abstract][Full Text] [Related]
7. Occurrence of mycotoxins in wheat grains exposed to fungicides on fusarium head blight control in southern Brazil. Marques LN; Pizzutti IR; Balardin RS; Dos Santos ID; Dias JV; Stefanello MT; Serafini PT J Environ Sci Health B; 2017 Apr; 52(4):244-250. PubMed ID: 28080216 [TBL] [Abstract][Full Text] [Related]
8. Combination of Palazzini J; Reynoso A; Yerkovich N; Zachetti V; Ramírez M; Chulze S Toxins (Basel); 2022 Jul; 14(7):. PubMed ID: 35878237 [No Abstract] [Full Text] [Related]
9. Exploration of Mycotoxin Accumulation and Transcriptomes of Different Wheat Cultivars during Li K; Yu D; Yan Z; Liu N; Fan Y; Wang C; Wu A Toxins (Basel); 2022 Jul; 14(7):. PubMed ID: 35878220 [No Abstract] [Full Text] [Related]
10. Systemic growth of F. graminearum in wheat plants and related accumulation of deoxynivalenol. Moretti A; Panzarini G; Somma S; Campagna C; Ravaglia S; Logrieco AF; Solfrizzo M Toxins (Basel); 2014 Apr; 6(4):1308-24. PubMed ID: 24727554 [TBL] [Abstract][Full Text] [Related]
11. Effect of Fusarium Head Blight Management Practices on Mycotoxin Contamination of Wheat Straw. Bissonnette KM; Kolb FL; Ames KA; Bradley CA Plant Dis; 2018 Jun; 102(6):1141-1147. PubMed ID: 30673442 [TBL] [Abstract][Full Text] [Related]
12. Early activation of wheat polyamine biosynthesis during Fusarium head blight implicates putrescine as an inducer of trichothecene mycotoxin production. Gardiner DM; Kazan K; Praud S; Torney FJ; Rusu A; Manners JM BMC Plant Biol; 2010 Dec; 10():289. PubMed ID: 21192794 [TBL] [Abstract][Full Text] [Related]
13. Fusarium head blight control and prevention of mycotoxin contamination in wheat with botanicals and tannic acid. Forrer HR; Musa T; Schwab F; Jenny E; Bucheli TD; Wettstein FE; Vogelgsang S Toxins (Basel); 2014 Feb; 6(3):830-49. PubMed ID: 24577585 [TBL] [Abstract][Full Text] [Related]
14. Fusarium cerealis causing Fusarium head blight of durum wheat and its associated mycotoxins. Palacios SA; Del Canto A; Erazo J; Torres AM Int J Food Microbiol; 2021 May; 346():109161. PubMed ID: 33773354 [TBL] [Abstract][Full Text] [Related]
15. Transgene pyramiding in wheat: Combination of deoxynivalenol detoxification with inhibition of cell wall degrading enzymes to contrast Fusarium Head Blight and Crown Rot. Mandalà G; Ceoloni C; Busato I; Favaron F; Tundo S Plant Sci; 2021 Dec; 313():111059. PubMed ID: 34763853 [TBL] [Abstract][Full Text] [Related]
16. Exogenous Abscisic Acid and Gibberellic Acid Elicit Opposing Effects on Fusarium graminearum Infection in Wheat. Buhrow LM; Cram D; Tulpan D; Foroud NA; Loewen MC Phytopathology; 2016 Sep; 106(9):986-96. PubMed ID: 27135677 [TBL] [Abstract][Full Text] [Related]
18. Effects of Fusarium graminearum and Fusarium poae on disease parameters, grain quality and mycotoxins contamination in bread wheat (Part I). Martínez M; Ramírez Albuquerque L; Arata AF; Biganzoli F; Fernández Pinto V; Stenglein SA J Sci Food Agric; 2020 Jan; 100(2):863-873. PubMed ID: 31646638 [TBL] [Abstract][Full Text] [Related]
19. Regional differences in the composition of Fusarium Head Blight pathogens and mycotoxins associated with wheat in Mexico. Cerón-Bustamante M; Ward TJ; Kelly A; Vaughan MM; McCormick SP; Cowger C; Leyva-Mir SG; Villaseñor-Mir HE; Ayala-Escobar V; Nava-Díaz C Int J Food Microbiol; 2018 May; 273():11-19. PubMed ID: 29554557 [TBL] [Abstract][Full Text] [Related]
20. Effect of moisture on wheat grains lipid patterns and infection with Fusarium graminearum. Ortega LM; Romero L; Moure C; Garmendia G; Ramírez Albuquerque D; Fernández Pinto V; Vero S; Alconada TM Int J Food Microbiol; 2019 Oct; 306():108264. PubMed ID: 31323448 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]