These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
368 related articles for article (PubMed ID: 31509811)
1. Collagen/bioceramic-based composite bioink to fabricate a porous 3D hASCs-laden structure for bone tissue regeneration. Kim W; Kim G Biofabrication; 2019 Nov; 12(1):015007. PubMed ID: 31509811 [TBL] [Abstract][Full Text] [Related]
2. Strategy to Achieve Highly Porous/Biocompatible Macroscale Cell Blocks, Using a Collagen/Genipin-bioink and an Optimal 3D Printing Process. Kim YB; Lee H; Kim GH ACS Appl Mater Interfaces; 2016 Nov; 8(47):32230-32240. PubMed ID: 27933843 [TBL] [Abstract][Full Text] [Related]
3. Highly bioactive cell-laden hydrogel constructs bioprinted using an emulsion bioink for tissue engineering applications. Kim W; Kim GH Biofabrication; 2022 Sep; 14(4):. PubMed ID: 36067738 [TBL] [Abstract][Full Text] [Related]
4. An Innovative Collagen-Based Cell-Printing Method for Obtaining Human Adipose Stem Cell-Laden Structures Consisting of Core-Sheath Structures for Tissue Engineering. Yeo M; Lee JS; Chun W; Kim GH Biomacromolecules; 2016 Apr; 17(4):1365-75. PubMed ID: 26998966 [TBL] [Abstract][Full Text] [Related]
5. Bone-derived dECM/alginate bioink for fabricating a 3D cell-laden mesh structure for bone tissue engineering. Lee J; Hong J; Kim W; Kim GH Carbohydr Polym; 2020 Dec; 250():116914. PubMed ID: 33049834 [TBL] [Abstract][Full Text] [Related]
6. A New Approach for Fabricating Collagen/ECM-Based Bioinks Using Preosteoblasts and Human Adipose Stem Cells. Lee HJ; Kim YB; Ahn SH; Lee JS; Jang CH; Yoon H; Chun W; Kim GH Adv Healthc Mater; 2015 Jun; 4(9):1359-68. PubMed ID: 25874573 [TBL] [Abstract][Full Text] [Related]
7. A cell-printing approach for obtaining hASC-laden scaffolds by using a collagen/polyphenol bioink. Yeo MG; Kim GH Biofabrication; 2017 Apr; 9(2):025004. PubMed ID: 28402968 [TBL] [Abstract][Full Text] [Related]
8. Effect of viscosity of gelatin methacryloyl-based bioinks on bone cells. Rashad A; Gomez A; Gangrade A; Zehtabi F; Mandal K; Maity S; Ma C; Li B; Khademhosseini A; de Barros NR Biofabrication; 2024 Sep; 16(4):. PubMed ID: 39121892 [TBL] [Abstract][Full Text] [Related]
9. Development of cell-laden photopolymerized constructs with bioactive amorphous calcium magnesium phosphate for bone tissue regeneration via 3D bioprinting. Kim JY; Kumar SB; Park CH; Kim CS Int J Biol Macromol; 2024 May; 267(Pt 2):131412. PubMed ID: 38593894 [TBL] [Abstract][Full Text] [Related]
10. An innovative cell-laden α-TCP/collagen scaffold fabricated using a two-step printing process for potential application in regenerating hard tissues. Kim WJ; Yun HS; Kim GH Sci Rep; 2017 Jun; 7(1):3181. PubMed ID: 28600538 [TBL] [Abstract][Full Text] [Related]
11. Composite bioink incorporating cell-laden liver decellularized extracellular matrix for bioprinting of scaffolds for bone tissue engineering. You P; Sun H; Chen H; Li C; Mao Y; Zhang T; Yang H; Dong H Biomater Adv; 2024 Dec; 165():214017. PubMed ID: 39236580 [TBL] [Abstract][Full Text] [Related]
12. Extracellular Matrix/Amorphous Magnesium Phosphate Bioink for 3D Bioprinting of Craniomaxillofacial Bone Tissue. Dubey N; Ferreira JA; Malda J; Bhaduri SB; Bottino MC ACS Appl Mater Interfaces; 2020 May; 12(21):23752-23763. PubMed ID: 32352748 [TBL] [Abstract][Full Text] [Related]
13. Graphene oxide/alginate composites as novel bioinks for three-dimensional mesenchymal stem cell printing and bone regeneration applications. Choe G; Oh S; Seok JM; Park SA; Lee JY Nanoscale; 2019 Dec; 11(48):23275-23285. PubMed ID: 31782460 [TBL] [Abstract][Full Text] [Related]
14. Collagen-based bioinks for hard tissue engineering applications: a comprehensive review. Marques CF; Diogo GS; Pina S; Oliveira JM; Silva TH; Reis RL J Mater Sci Mater Med; 2019 Mar; 30(3):32. PubMed ID: 30840132 [TBL] [Abstract][Full Text] [Related]
15. Employing PEG crosslinkers to optimize cell viability in gel phase bioinks and tailor post printing mechanical properties. Rutz AL; Gargus ES; Hyland KE; Lewis PL; Setty A; Burghardt WR; Shah RN Acta Biomater; 2019 Nov; 99():121-132. PubMed ID: 31539655 [TBL] [Abstract][Full Text] [Related]
16. An intestinal model with a finger-like villus structure fabricated using a bioprinting process and collagen/SIS-based cell-laden bioink. Kim W; Kim GH Theranostics; 2020; 10(6):2495-2508. PubMed ID: 32194815 [TBL] [Abstract][Full Text] [Related]
17. Fabrication of vascularized tissue-engineered bone models using triaxial bioprinting. Zhang J; Suttapreyasri S; Leethanakul C; Samruajbenjakun B J Biomed Mater Res A; 2024 Jul; 112(7):1093-1106. PubMed ID: 38411369 [TBL] [Abstract][Full Text] [Related]
18. A bioprintable form of chitosan hydrogel for bone tissue engineering. Demirtaş TT; Irmak G; Gümüşderelioğlu M Biofabrication; 2017 Jul; 9(3):035003. PubMed ID: 28639943 [TBL] [Abstract][Full Text] [Related]
19. A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage. Daly AC; Critchley SE; Rencsok EM; Kelly DJ Biofabrication; 2016 Oct; 8(4):045002. PubMed ID: 27716628 [TBL] [Abstract][Full Text] [Related]
20. An osteogenic bioink composed of alginate, cellulose nanofibrils, and polydopamine nanoparticles for 3D bioprinting and bone tissue engineering. Im S; Choe G; Seok JM; Yeo SJ; Lee JH; Kim WD; Lee JY; Park SA Int J Biol Macromol; 2022 Apr; 205():520-529. PubMed ID: 35217077 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]