These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 31510183)

  • 1. Deep learning enabled real time speckle recognition and hyperspectral imaging using a multimode fiber array.
    Kürüm U; Wiecha PR; French R; Muskens OL
    Opt Express; 2019 Jul; 27(15):20965-20979. PubMed ID: 31510183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multimode optical fiber transmission with a deep learning network.
    Rahmani B; Loterie D; Konstantinou G; Psaltis D; Moser C
    Light Sci Appl; 2018; 7():69. PubMed ID: 30302240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Snapshot fiber spectral imaging using speckle correlations and compressive sensing.
    French R; Gigan S; Muskens OL
    Opt Express; 2018 Nov; 26(24):32302-32316. PubMed ID: 30650691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Prediction-Based Spatial-Spectral Adaptive Hyperspectral Compressive Sensing Algorithm.
    Xu P; Chen B; Xue L; Zhang J; Zhu L
    Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30274352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning-based object classification through multimode fiber via a CNN-architecture SpeckleNet.
    Wang P; Di J
    Appl Opt; 2018 Oct; 57(28):8258-8263. PubMed ID: 30461775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-Channel Switchable Metasurface Filters for Compact Spectral Imaging with Deep Compressive Reconstruction.
    Wang C; Liu X; Zhang Y; Sun Y; Yu Z; Zheng Z
    Nanomaterials (Basel); 2023 Oct; 13(21):. PubMed ID: 37947699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive Grouping Distributed Compressive Sensing Reconstruction of Plant Hyperspectral Data.
    Xu P; Liu J; Xue L; Zhang J; Qiu B
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28590433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Speckle-based hyperspectral imaging combining multiple scattering and compressive sensing in nanowire mats.
    French R; Gigan S; Muskens OL
    Opt Lett; 2017 May; 42(9):1820-1823. PubMed ID: 28454169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-Rank and Sparse Matrix Recovery for Hyperspectral Image Reconstruction Using Bayesian Learning.
    Zhang Y; Huang LT; Li Y; Zhang K; Yin C
    Sensors (Basel); 2022 Jan; 22(1):. PubMed ID: 35009885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced deep unrolling networks for snapshot compressive hyperspectral imaging.
    Qin X; Quan Y; Ji H
    Neural Netw; 2024 Jun; 174():106250. PubMed ID: 38531122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep-learning-based single-photon-counting compressive imaging via jointly trained subpixel convolution sampling.
    Li WC; Yan QR; Guan YQ; Yang ST; Peng C; Fang ZY
    Appl Opt; 2020 Aug; 59(23):6828-6837. PubMed ID: 32788773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Semi-Supervised Deep Learning Using Pseudo Labels for Hyperspectral Image Classification.
    Hao Wu ; Prasad S
    IEEE Trans Image Process; 2018 Mar; 27(3):1259-1270. PubMed ID: 29990156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Central wavelength estimation in spectral imaging behind a diffuser via deep learning.
    Tsukada T; Watanabe W
    Appl Opt; 2023 Jun; 62(16):4143-4149. PubMed ID: 37706897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning for efficiently imaging through the localized speckle field of a multimode fiber.
    Chen Y; Song B; Wu J; Lin W; Huang W
    Appl Opt; 2023 Jan; 62(2):266-274. PubMed ID: 36630224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Reconstruction of Water Hyperspectral Remote Sensing Reflectance Based on Sparse Representation and Its Application].
    Li Y; Li YM; Guo YL; Zhang YL; Zhang YB; Hu YD; Xia Z
    Huan Jing Ke Xue; 2019 Jan; 40(1):200-210. PubMed ID: 30628276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-shot hyperspectral imaging based on dual attention neural network with multi-modal learning.
    He T; Zhang Q; Zhou M; Kou T; Shen J
    Opt Express; 2022 Mar; 30(6):9790-9813. PubMed ID: 35299395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Speckle wavemeter based on a multi-core fiber and compressive imaging.
    Liu H; Kong H; He J; Qiu Y; Mao B; Meng Y; Li Y; Kang J; Wang L; Li Y
    Appl Opt; 2024 Jan; 63(3):846-852. PubMed ID: 38294400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Information distribution on regions of speckle patterns for imaging of multimode fiber.
    Liu S; Sun Y; Liu W; Xiao F; Song H
    Heliyon; 2023 Feb; 9(2):e13357. PubMed ID: 36816253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unique Hyperspectral Response Design in High-Speed Photodetectors Enabled by Periodic Surface Textures.
    Ahamed A; Rawat A; Mayet AS; McPhillips LN; Islam MS
    Res Sq; 2023 Jul; ():. PubMed ID: 37503247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning for sensing with a multimode exposed core fiber specklegram sensor.
    Smith DL; Nguyen LV; Ottaway DJ; Cabral TD; Fujiwara E; Cordeiro CMB; Warren-Smith SC
    Opt Express; 2022 Mar; 30(7):10443-10455. PubMed ID: 35473011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.