These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 31510199)

  • 1. Mechanism of polaritons coupling from perspective of equivalent MLC circuits model in slit arrays.
    Guo Y; Shuai Y; Tan H
    Opt Express; 2019 Jul; 27(15):21173-21184. PubMed ID: 31510199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of multiple resonance characteristics by an extended resistor-inductor-capacitor circuit model for plasmonic metamaterials absorbers in infrared.
    Xu X; Li Y; Wang B; Zhou Z
    Opt Lett; 2015 Oct; 40(19):4432-5. PubMed ID: 26421549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micro-Fabricated Resonator Based on Inscribing a Meandered-Line Coupling Capacitor in an Air-Bridged Circular Spiral Inductor.
    Kim ES; Kim NY
    Micromachines (Basel); 2018 Jun; 9(6):. PubMed ID: 30424227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film.
    Lee BJ; Wang LP; Zhang ZM
    Opt Express; 2008 Jul; 16(15):11328-36. PubMed ID: 18648451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface plasmon polariton resonance and transmission enhancement of light through subwavelength slit arrays in metallic films.
    Kim MW; Kim TT; Kim JE; Park HY
    Opt Express; 2009 Jul; 17(15):12315-22. PubMed ID: 19654633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic response of metamaterials at 100 terahertz.
    Linden S; Enkrich C; Wegener M; Zhou J; Koschny T; Soukoulis CM
    Science; 2004 Nov; 306(5700):1351-3. PubMed ID: 15550664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission.
    Li T; Liu H; Wang FM; Dong ZG; Zhu SN; Zhang X
    Opt Express; 2006 Nov; 14(23):11155-63. PubMed ID: 19529529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing the efficiency of slit-coupling to surface-plasmon-polaritons via dispersion engineering.
    Mehfuz R; Maqsood MW; Chau KJ
    Opt Express; 2010 Aug; 18(17):18206-16. PubMed ID: 20721210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interplay between strong coupling and radiative damping of excitons and surface plasmon polaritons in hybrid nanostructures.
    Wang W; Vasa P; Pomraenke R; Vogelgesang R; De Sio A; Sommer E; Maiuri M; Manzoni C; Cerullo G; Lienau C
    ACS Nano; 2014 Jan; 8(1):1056-64. PubMed ID: 24377290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On Plasmon Polariton Propagation Along Metallic Nano-Chain.
    Jacak WA
    Plasmonics; 2013; 8(3):1317-1333. PubMed ID: 23956703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wideband Substrate Integrated Waveguide Chip Filter Using Spoof Surface Plasmon Polariton.
    Pan D; You B; Wen X; Li X
    Micromachines (Basel); 2022 Jul; 13(8):. PubMed ID: 36014117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electric and magnetic surface polariton mediated near-field radiative heat transfer between metamaterials made of silicon carbide particles.
    Francoeur M; Basu S; Petersen SJ
    Opt Express; 2011 Sep; 19(20):18774-88. PubMed ID: 21996819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polarization-dependent strong coupling between surface plasmon polaritons and excitons in an organic-dye-doped nanostructure.
    Zhang K; Chen TY; Shi WB; Li CY; Fan RH; Wang QJ; Peng RW; Wang M
    Opt Lett; 2017 Jul; 42(14):2834-2837. PubMed ID: 28708181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phonon-mediated magnetic polaritons
in the infrared region.
    Wang LP; Zhang ZM
    Opt Express; 2011 Mar; 19 Suppl 2():A126-35. PubMed ID: 21445214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectrally Enhancing Near-Field Radiative Transfer between Metallic Gratings by Exciting Magnetic Polaritons in Nanometric Vacuum Gaps.
    Yang Y; Wang L
    Phys Rev Lett; 2016 Jul; 117(4):044301. PubMed ID: 27494474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Equivalent circuit parameters of planar transmission lines with spoof surface plasmon polaritons and its application in high density circuits.
    Wu CH; Shen L; Zhang H; Yan J; Hou DJ; Zhou G; Wu YL
    Sci Rep; 2019 Dec; 9(1):18853. PubMed ID: 31827144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trapping mid-infrared rays in a lossy film with the Berreman mode, epsilon near zero mode, and magnetic polaritons.
    Chen YB; Chiu FC
    Opt Express; 2013 Sep; 21(18):20771-85. PubMed ID: 24103950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Significantly enhanced infrared absorption of graphene photodetector under surface-plasmonic coupling and polariton interference.
    Zhang Y; Meng D; Li X; Yu H; Lai J; Fan Z; Chen C
    Opt Express; 2018 Nov; 26(23):30862-30872. PubMed ID: 30469978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theory of enhanced optical transmission through a metallic nano-slit surrounded with asymmetric grooves under oblique incidence.
    Cai L; Li G; Xiao F; Wang Z; Xu A
    Opt Express; 2010 Sep; 18(19):19495-503. PubMed ID: 20940845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Directional coupling of surface plasmon polaritons using single nano-slit with asymmetric sidewall structure and material composition.
    Hou CC; Kan HC
    Opt Express; 2020 Feb; 28(4):4741-4750. PubMed ID: 32121706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.