These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 31510232)

  • 1. Deep subwavelength confinement and threshold engineering in a coupled nanorods based spaser.
    Motavas MH; Zarifkar A
    Opt Express; 2019 Jul; 27(15):21579-21596. PubMed ID: 31510232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semiconductor plasmonic nanolasers: current status and perspectives.
    Gwo S; Shih CK
    Rep Prog Phys; 2016 Aug; 79(8):086501. PubMed ID: 27459210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of Lead Halide Perovskite Based Plasmonic Nanolasers and Nanolaser Arrays by Tailoring the Substrate.
    Huang C; Sun W; Fan Y; Wang Y; Gao Y; Zhang N; Wang K; Liu S; Wang S; Xiao S; Song Q
    ACS Nano; 2018 Apr; 12(4):3865-3874. PubMed ID: 29641176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of an ultrafast plasmonic nanolaser for high-intensity broadband emission operating at room temperature.
    Zhou P; Jin L; Liang K; Liang X; Li J; Deng X; Wang Y; Guo J; Yu L; Zhang J
    Opt Lett; 2024 Jun; 49(11):2930-2933. PubMed ID: 38824295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultracompact Pseudowedge Plasmonic Lasers and Laser Arrays.
    Chou YH; Hong KB; Chang CT; Chang TC; Huang ZT; Cheng PJ; Yang JH; Lin MH; Lin TR; Chen KP; Gwo S; Lu TC
    Nano Lett; 2018 Feb; 18(2):747-753. PubMed ID: 29320208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. All-color plasmonic nanolasers with ultralow thresholds: autotuning mechanism for single-mode lasing.
    Lu YJ; Wang CY; Kim J; Chen HY; Lu MY; Chen YC; Chang WH; Chen LJ; Stockman MI; Shih CK; Gwo S
    Nano Lett; 2014 Aug; 14(8):4381-8. PubMed ID: 25029207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antiboding and bonding lasing modes with low gain threshold in nonlocal metallic nanoshell.
    Huang Y; Xiao JJ; Gao L
    Opt Express; 2015 Apr; 23(7):8818-28. PubMed ID: 25968719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmon-exciton coupling dynamics and plasmonic lasing in a core-shell nanocavity.
    Wang R; Xu C; You D; Wang X; Chen J; Shi Z; Cui Q; Qiu T
    Nanoscale; 2021 Apr; 13(14):6780-6785. PubMed ID: 33885480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Design and Research of a New Hybrid Surface Plasmonic Waveguide Nanolaser.
    Liu Y; Li F; Xu C; He Z; Gao J; Zhou Y; Xu L
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33926014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving the room-temperature confinement of light by miniaturizing mode sizes into a deep subwavelength scale using dielectric spheres in metal cavities.
    Liu K; Luo Z; Ye WM; Yuan XD; Zhu ZH; Zeng C
    Opt Lett; 2012 Oct; 37(19):4107-9. PubMed ID: 23027294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Room temperature plasmonic lasing in a continuous wave operation mode from an InGaN/GaN single nanorod with a low threshold.
    Hou Y; Renwick P; Liu B; Bai J; Wang T
    Sci Rep; 2014 May; 4():5014. PubMed ID: 24852881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid nanowedge plasmonic waveguide for low loss propagation with ultra-deep-subwavelength mode confinement.
    Ma Y; Farrell G; Semenova Y; Wu Q
    Opt Lett; 2014 Feb; 39(4):973-6. PubMed ID: 24562255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron-Beam-Driven III-Nitride Plasmonic Nanolasers in the Deep-UV and Visible Region.
    Tao T; Zhi T; Liu B; Chen P; Xie Z; Zhao H; Ren F; Chen D; Zheng Y; Zhang R
    Small; 2020 Jan; 16(1):e1906205. PubMed ID: 31793750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Power Balance and Temperature in Optically Pumped Spasers and Nanolasers.
    Kristanz GV; Arnold N; Kildishev AV; Klar TA
    ACS Photonics; 2018 Sep; 5(9):3695-3703. PubMed ID: 30271813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic green nanolaser based on a metal-oxide-semiconductor structure.
    Wu CY; Kuo CT; Wang CY; He CL; Lin MH; Ahn H; Gwo S
    Nano Lett; 2011 Oct; 11(10):4256-60. PubMed ID: 21882819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Operation-Temperature Plasmonic Nanolasers on Single-Crystalline Aluminum.
    Chou YH; Wu YM; Hong KB; Chou BT; Shih JH; Chung YC; Chen PY; Lin TR; Lin CC; Lin SD; Lu TC
    Nano Lett; 2016 May; 16(5):3179-86. PubMed ID: 27089144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid material based on plasmonic nanodisks decorated ZnO and its application on nanoscale lasers.
    Chen Z; Lai B; Zhang J; Wang G; Chu S
    Nanotechnology; 2014 Jul; 25(29):295203. PubMed ID: 24990516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ten years of spasers and plasmonic nanolasers.
    Azzam SI; Kildishev AV; Ma RM; Ning CZ; Oulton R; Shalaev VM; Stockman MI; Xu JL; Zhang X
    Light Sci Appl; 2020; 9():90. PubMed ID: 32509297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrahigh Purcell factor in low-threshold nanolaser based on asymmetric hybrid plasmonic cavity.
    Wei W; Yan X; Zhang X
    Sci Rep; 2016 Sep; 6():33063. PubMed ID: 27616768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.