BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 31510248)

  • 1. Light focusing through scattering media via linear fluorescence variance maximization, and its application for fluorescence imaging.
    Daniel A; Oron D; Silberberg Y
    Opt Express; 2019 Jul; 27(15):21778-21786. PubMed ID: 31510248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-invasive imaging through opaque scattering layers.
    Bertolotti J; van Putten EG; Blum C; Lagendijk A; Vos WL; Mosk AP
    Nature; 2012 Nov; 491(7423):232-4. PubMed ID: 23135468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-Invasive Imaging Through Scattering Medium by Using a Reverse Response Wavefront Shaping Technique.
    Sanjeev A; Kapellner Y; Shabairou N; Gur E; Sinvani M; Zalevsky Z
    Sci Rep; 2019 Aug; 9(1):12275. PubMed ID: 31439914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-invasive focusing and imaging in scattering media with a fluorescence-based transmission matrix.
    Boniface A; Dong J; Gigan S
    Nat Commun; 2020 Dec; 11(1):6154. PubMed ID: 33262335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional focusing through scattering media using conjugate adaptive optics with remote focusing (CAORF).
    Tao X; Lam T; Zhu B; Li Q; Reinig MR; Kubby J
    Opt Express; 2017 May; 25(9):10368-10383. PubMed ID: 28468409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 13-fold resolution gain through turbid layer via translated unknown speckle illumination.
    Guo K; Zhang Z; Jiang S; Liao J; Zhong J; Eldar YC; Zheng G
    Biomed Opt Express; 2018 Jan; 9(1):260-275. PubMed ID: 29359102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detecting relative speed changes of moving objects through scattering medium by using wavefront shaping and laser speckle contrast analysis.
    Li Y; Liu R; Wang Y; Wen D; Meng L; Lu J; Li P
    Opt Express; 2016 Apr; 24(8):8382-90. PubMed ID: 27137275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blind focusing through strongly scattering media using wavefront shaping with nonlinear feedback.
    Osnabrugge G; Amitonova LV; Vellekoop IM
    Opt Express; 2019 Apr; 27(8):11673-11688. PubMed ID: 31053010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast 3D movement of a laser focusing spot behind scattering media by utilizing optical memory effect and optical conjugate planes.
    Tran V; Sahoo SK; Dang C
    Sci Rep; 2019 Dec; 9(1):19507. PubMed ID: 31862990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Speckle-correlation imaging through a kaleidoscopic multimode fiber.
    Bouchet D; Caravaca-Aguirre AM; Godefroy G; Moreau P; Wang I; Bossy E
    Proc Natl Acad Sci U S A; 2023 Jun; 120(26):e2221407120. PubMed ID: 37343065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-speed feedback based wavefront shaping for spatiotemporal enhancement of incoherent light through dynamic scattering media.
    Hsieh CM; Malik MOA; Liu Q
    Opt Lett; 2023 May; 48(9):2313-2316. PubMed ID: 37126262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency bandwidth of light focused through turbid media.
    van Beijnum F; van Putten EG; Lagendijk A; Mosk AP
    Opt Lett; 2011 Feb; 36(3):373-5. PubMed ID: 21283194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Guidestar-free image-guided wavefront shaping.
    Yeminy T; Katz O
    Sci Adv; 2021 May; 7(21):. PubMed ID: 34138733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transmission and fluorescence angular domain optical projection tomography of turbid media.
    Vasefi F; Ng E; Kaminska B; Chapman GH; Jordan K; Carson JJ
    Appl Opt; 2009 Nov; 48(33):6448-57. PubMed ID: 19935964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tracking moving targets behind a scattering medium via speckle correlation.
    Guo C; Liu J; Wu T; Zhu L; Shao X
    Appl Opt; 2018 Feb; 57(4):905-913. PubMed ID: 29400766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transmission matrix approaches for nonlinear fluorescence excitation through multiple scattering media.
    Mounaix M; Ta DM; Gigan S
    Opt Lett; 2018 Jun; 43(12):2831-2834. PubMed ID: 29905700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media.
    Lai P; Wang L; Tay JW; Wang LV
    Nat Photonics; 2015 Feb; 9(2):126-132. PubMed ID: 25914725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wavefront shaping through a free-form scattering object.
    Rates A; Lagendijk A; Adam AJL; IJzerman WL; Vos WL
    Opt Express; 2023 Dec; 31(26):43351-43361. PubMed ID: 38178430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A programmable light engine for quantitative single molecule TIRF and HILO imaging.
    van 't Hoff M; de Sars V; Oheim M
    Opt Express; 2008 Oct; 16(22):18495-504. PubMed ID: 18958128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-invasive and noise-robust light focusing using confocal wavefront shaping.
    Aizik D; Levin A
    Nat Commun; 2024 Jul; 15(1):5575. PubMed ID: 38956030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.