BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 31510273)

  • 1. Foveated computer-generated hologram and its progressive update using triangular mesh scene model for near-eye displays.
    Ju YG; Park JH
    Opt Express; 2019 Aug; 27(17):23725-23738. PubMed ID: 31510273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous shading and its fast update in fully analytic triangular-mesh-based computer generated hologram.
    Park JH; Kim SB; Yeom HJ; Kim HJ; Zhang H; Li B; Ji YM; Kim SH; Ko SB
    Opt Express; 2015 Dec; 23(26):33893-901. PubMed ID: 26832048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Foveated holographic near-eye 3D display.
    Chang C; Cui W; Gao L
    Opt Express; 2020 Jan; 28(2):1345-1356. PubMed ID: 32121847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient texture mapping by adaptive mesh division in mesh-based computer generated hologram.
    Ji YM; Yeom H; Park JH
    Opt Express; 2016 Nov; 24(24):28154-28169. PubMed ID: 27906380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of line artifacts on mesh boundary in computer generated hologram by mesh phase matching.
    Park JH; Yeom HJ; Kim HJ; Zhang H; Li B; Ji YM; Kim SH
    Opt Express; 2015 Mar; 23(6):8006-13. PubMed ID: 25837138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Speckle-suppression in hologram calculation using ray-sampling plane.
    Utsugi T; Yamaguchi M
    Opt Express; 2014 Jul; 22(14):17193-206. PubMed ID: 25090533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient calculation scheme for high pixel resolution non-hogel-based computer generated hologram from light field.
    Park JH
    Opt Express; 2020 Mar; 28(5):6663-6683. PubMed ID: 32225909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Layered holographic stereogram based on inverse Fresnel diffraction.
    Zhang H; Zhao Y; Cao L; Jin G
    Appl Opt; 2016 Jan; 55(3):A154-9. PubMed ID: 26835948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer-generated photorealistic hologram using ray-wavefront conversion based on the additive compressive light field approach.
    Wang Z; Zhu LM; Zhang X; Dai P; Lv GQ; Feng QB; Wang AT; Ming H
    Opt Lett; 2020 Feb; 45(3):615-618. PubMed ID: 32004265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Speckle reduction using angular spectrum interleaving for triangular mesh based computer generated hologram.
    Ko SB; Park JH
    Opt Express; 2017 Nov; 25(24):29788-29797. PubMed ID: 29221015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating learning-empowered hologram generation for holographic displays with ill-tuned hardware.
    Xia X; Yang F; Wang W; Shui X; Guan F; Zheng H; Yu Y; Peng Y
    Opt Lett; 2023 Mar; 48(6):1478-1481. PubMed ID: 36946957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast calculation method with foveated rendering for computer-generated holograms using an angle-changeable ray-tracing method.
    Wei L; Sakamoto Y
    Appl Opt; 2019 Feb; 58(5):A258-A266. PubMed ID: 30873999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superpixel-based sub-hologram method for real-time color three-dimensional holographic display with large size.
    Ma H; Wei C; Wei J; Han Y; Pi D; Yang Y; Zhao W; Wang Y; Liu J
    Opt Express; 2022 Aug; 30(17):31287-31297. PubMed ID: 36242214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gaze-Contingent Retinal Speckle Suppression for Perceptually-Matched Foveated Holographic Displays.
    Chakravarthula P; Zhang Z; Tursun O; Didyk P; Sun Q; Fuchs H
    IEEE Trans Vis Comput Graph; 2021 Nov; 27(11):4194-4203. PubMed ID: 34449368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast hologram generation using intermediate angular-spectrum method for high-quality compact on-axis holographic display.
    Chen C; Chang K; Liu C; Wang J; Wang Q
    Opt Express; 2019 Sep; 27(20):29401-29414. PubMed ID: 31684675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time layer-based computer-generated hologram calculation for the Fourier transform optical system.
    Gilles A; Gioia P
    Appl Opt; 2018 Oct; 57(29):8508-8517. PubMed ID: 30461916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rendering of 3D scenes in analytical polygon-based computer holography with texture mapping.
    Qin W; Fu Q; Zhang Y; Zhang B; Wang P; Poon TC; Gu X
    J Opt Soc Am A Opt Image Sci Vis; 2024 Mar; 41(3):A32-A39. PubMed ID: 38437421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Occlusion handling using angular spectrum convolution in fully analytical mesh based computer generated hologram.
    Askari M; Kim SB; Shin KS; Ko SB; Kim SH; Park DY; Ju YG; Park JH
    Opt Express; 2017 Oct; 25(21):25867-25878. PubMed ID: 29041249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acceleration of computer-generated hologram using wavefront-recording plane and look-up table in three-dimensional holographic display.
    Pi D; Liu J; Han Y; Yu S; Xiang N
    Opt Express; 2020 Mar; 28(7):9833-9841. PubMed ID: 32225583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-hogel-based computer generated hologram from light field using complex field recovery technique from Wigner distribution function.
    Park JH; Askari M
    Opt Express; 2019 Feb; 27(3):2562-2574. PubMed ID: 30732292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.