BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 31510302)

  • 1. Performance evaluation of neural network assisted motion detection schemes implemented within indoor optical camera based communications.
    Teli SR; Zvanovec S; Ghassemlooy Z
    Opt Express; 2019 Aug; 27(17):24082-24092. PubMed ID: 31510302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-accuracy scheme based on a look-up table for motion detection in an optical camera communication system.
    He J; Huang Z; Yu K
    Opt Express; 2020 Mar; 28(7):10270-10279. PubMed ID: 32225615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of an SVM Classifier Assisted Intelligent Receiver for Reliable Optical Camera Communication.
    Rahman MH; Shahjalal M; Hasan MK; Ali MO; Jang YM
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34201540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical Camera Communications for IoT-Rolling-Shutter Based MIMO Scheme with Grouped LED Array Transmitter.
    Teli SR; Matus V; Zvanovec S; Perez-Jimenez R; Vitek S; Ghassemlooy Z
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32545751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical Camera Communications in Healthcare: A Wearable LED Transmitter Evaluation during Indoor Physical Exercise.
    Niarchou E; Matus V; Rabadan J; Guerra V; Perez-Jimenez R
    Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-distance indoor optical camera communication using side-emitting fibers as distributed transmitters.
    Eöllős-Jarošíková K; Neuman V; Jurado-Verdú CM; Teli SR; Zvánovec S; Komanec M
    Opt Express; 2023 Jul; 31(16):26980-26989. PubMed ID: 37710546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photography Trilateration Indoor Localization with Image Sensor Communication.
    Le NT; Jang YM
    Sensors (Basel); 2019 Jul; 19(15):. PubMed ID: 31357434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-line-of-sight optical camera communications based on CPWM and a convolutional neural network.
    Wan X; Lin B; Ghassemlooy Z; Huang T; Luo J; Ding Y
    Appl Opt; 2023 Oct; 62(28):7367-7372. PubMed ID: 37855504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Curved OLED-based NLOS optical camera communications links.
    Teli SR; Matus V; Aguiar CL; Perez-Jimenez R; Ghassemlooy Z; Zvanovec S
    Appl Opt; 2023 Oct; 62(30):8204-8210. PubMed ID: 38038119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wavy water-to-air optical camera communication system using rolling shutter image sensor and long short term memory neural network.
    Tsai SY; Chang YH; Chow CW
    Opt Express; 2024 Feb; 32(5):6814-6822. PubMed ID: 38439378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PAM4 rolling-shutter demodulation using a pixel-per-symbol labeling neural network for optical camera communications.
    Lin YS; Chow CW; Liu Y; Chang YH; Lin KH; Wang YC; Chen YY
    Opt Express; 2021 Sep; 29(20):31680-31688. PubMed ID: 34615256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and Implementation of a Hybrid Optical Camera Communication System for Indoor Applications.
    Nguyen H; Le NT; Le DTA; Jang YM
    Sensors (Basel); 2024 Jan; 24(1):. PubMed ID: 38203162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical camera communication (OCC) using a laser-diode coupled optical-diffusing fiber (ODF) and rolling shutter image sensor.
    Tsai DC; Chang YH; Chow CW; Liu Y; Yeh CH; Peng CW; Hsu LS
    Opt Express; 2022 May; 30(10):16069-16077. PubMed ID: 36221459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compensation schemes for uneven illumination and LED light-emitting instability in optical camera communication system.
    Ji S; Yang A; Fan W; Feng L; Zhang Z; Zhang M
    Opt Express; 2024 May; 32(10):17116-17131. PubMed ID: 38858902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical extra-body communication using smartphone cameras for human vital sign transmission.
    Dhatchayeny DR; Chung YH
    Appl Opt; 2019 May; 58(15):3995-3999. PubMed ID: 31158149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient demodulation scheme based on adaptive clock extraction and mapping-sampling for a mobile OCC system.
    Huang Z; He J; Yu K; Li W
    Appl Opt; 2021 Apr; 60(12):3308-3313. PubMed ID: 33983233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Utilization of Artificial Neural Network Equalizer in Optical Camera Communications.
    Younus OI; Hassan NB; Ghassemlooy Z; Zvanovec S; Alves LN; Le-Minh H
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33923835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-Time Healthcare Data Transmission for Remote Patient Monitoring in Patch-Based Hybrid OCC/BLE Networks.
    Hasan MK; Shahjalal M; Chowdhury MZ; Jang YM
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30857318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust OCC System Optimized for Low-Frame-Rate Receivers.
    Dobre RA; Preda RO; Badea RA
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sub-column pixel neural network scheme for modulation format shifting based optical camera communications.
    Shi J; He J; Yan X
    Opt Lett; 2023 Jan; 48(1):85-88. PubMed ID: 36563375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.