BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 31510368)

  • 1. Hybrid graphene metasurface for near-infrared absorbers.
    Rahman MM; Raza A; Younes H; AlGhaferi A; Chiesa M; Lu J
    Opt Express; 2019 Sep; 27(18):24866-24876. PubMed ID: 31510368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultra-Narrow Band Mid-Infrared Perfect Absorber Based on Hybrid Dielectric Metasurface.
    Chen S; Chen Z; Liu J; Cheng J; Zhou Y; Xiao L; Chen K
    Nanomaterials (Basel); 2019 Sep; 9(10):. PubMed ID: 31547054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Broadband Plasmonic Absorbers with Tunable Light Management on Flexible Tapered Metasurface.
    Hou G; Wang Z; Lu Z; Song H; Xu J; Chen K
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56178-56185. PubMed ID: 33269925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal and graphene hybrid metasurface designed ultra-wideband terahertz absorbers with polarization and incident angle insensitivity.
    Peng L; Li XM; Liu X; Jiang X; Li SM
    Nanoscale Adv; 2019 Apr; 1(4):1452-1459. PubMed ID: 36132596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators.
    Yao Y; Shankar R; Kats MA; Song Y; Kong J; Loncar M; Capasso F
    Nano Lett; 2014 Nov; 14(11):6526-32. PubMed ID: 25310847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multifunctional Graphene Metasurface for Highly Flexible Control of Microwave Absorption.
    Wang P; Han W; Tao H; Zhang C; Xu Y; Wang Q
    ACS Appl Mater Interfaces; 2024 Jan; 16(2):2649-2658. PubMed ID: 38174876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrically tunable absorber based on a graphene integrated lithium niobate resonant metasurface.
    Chen X; Meng Q; Xu W; Zhang J; Zhu Z; Qin S
    Opt Express; 2021 Oct; 29(21):32796-32803. PubMed ID: 34809102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region.
    Wu D; Liu C; Liu Y; Yu L; Yu Z; Chen L; Ma R; Ye H
    Opt Lett; 2017 Feb; 42(3):450-453. PubMed ID: 28146499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental near infrared absorption enhancement of graphene layers in an optical resonant cavity.
    Nematpour A; Lisi N; Piegari A; Lancellotti L; Hu G; Grilli ML
    Nanotechnology; 2019 Nov; 30(44):445201. PubMed ID: 31341097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra-broadband infrared metasurface absorber.
    Guo W; Liu Y; Han T
    Opt Express; 2016 Sep; 24(18):20586-92. PubMed ID: 27607662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-Area Broadband Near-Perfect Absorption from a Thin Chalcogenide Film Coupled to Gold Nanoparticles.
    Cao T; Liu K; Lu L; Chui HC; Simpson RE
    ACS Appl Mater Interfaces; 2019 Feb; 11(5):5176-5182. PubMed ID: 30632371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation.
    Liu Z; Liu X; Huang S; Pan P; Chen J; Liu G; Gu G
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4962-8. PubMed ID: 25679790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hollow-petal graphene metasurface for broadband tunable THz absorption.
    Wu S; Li JS
    Appl Opt; 2019 Apr; 58(11):3023-3028. PubMed ID: 31044907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Broadband Perfect Optical Absorption by Coupled Semiconductor Resonator-Based All-Dielectric Metasurface.
    Weng Z; Guo Y
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31013974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced spatial near-infrared modulation of graphene-loaded perfect absorbers using plasmonic nanoslits.
    Cai Y; Zhu J; Liu QH; Lin T; Zhou J; Ye L; Cai Z
    Opt Express; 2015 Dec; 23(25):32318-28. PubMed ID: 26699022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual broadband near-infrared perfect absorber based on a hybrid plasmonic-photonic microstructure.
    Liu Z; Zhan P; Chen J; Tang C; Yan Z; Chen Z; Wang Z
    Opt Express; 2013 Feb; 21(3):3021-30. PubMed ID: 23481760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Omnidirectional broadband metasurface absorber operating in visible to near-infrared regime.
    Wu S; Gu Y; Ye Y; Ye H; Chen L
    Opt Express; 2018 Aug; 26(17):21479-21489. PubMed ID: 30130854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Broadened band near-perfect absorber based on amorphous silicon metasurface.
    Si J; Yu X; Zhang J; Yang W; Liu S; Deng X
    Opt Express; 2020 Jun; 28(12):17900-17905. PubMed ID: 32679992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-area long-wave infrared broadband all-dielectric metasurface absorber based on markless laser direct writing lithography.
    Chen C; Liu Y; Jiang ZY; Shen C; Zhang Y; Zhong F; Chen L; Zhu S; Liu H
    Opt Express; 2022 Apr; 30(8):13391-13403. PubMed ID: 35472952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Printable and low-cost perfect terahertz absorber realized by a laser-induced graphene metasurface.
    Dong Y; Wang Z; Xiong C; Deng B; Hu B
    Opt Lett; 2023 Oct; 48(19):5009-5012. PubMed ID: 37773372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.