These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 31510391)

  • 1. Engineering equations for the filamentation collapse distance in lossy, turbulent, nonlinear media.
    Stotts LB; Peñano JR; Tellez JA; Schmidt JD; Urick VJ
    Opt Express; 2019 Sep; 27(18):25126-25141. PubMed ID: 31510391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering equation for filamentation self-focusing collapse distance in atmospheric turbulence.
    Stotts LB; Peñano J; Urick VJ
    Opt Express; 2019 May; 27(11):15159-15171. PubMed ID: 31163716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probability density function estimation for filament creation in lossy, turbulent, nonlinear media.
    Stotts LB; Oliver A; Peñano JR
    Opt Express; 2022 Feb; 30(4):5063-5074. PubMed ID: 35209477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering equations for characterizing non-linear laser intensity propagation in air with loss.
    Karr T; Stotts LB; Tellez JA; Schmidt JD; Mansell JD
    Opt Express; 2018 Feb; 26(4):3974-3987. PubMed ID: 29475254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical Kerr effect field measurements and ad hoc engineering model comparisons.
    Stotts LB; Oliver A; DiComo G; Helle M; Young J; Isaacs J; Peñano JR; Tellez JA; Schmidt JD; Coffaro J; Urick VJ
    Opt Express; 2021 Aug; 29(16):25731-25744. PubMed ID: 34614896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beam Wander Restrained by Nonlinearity of Femtosecond Laser Filament in Air.
    Guo J; Sun L; Liu J; Shang B; Tao S; Zhang N; Lin L; Zhang Z
    Sensors (Basel); 2022 Jul; 22(13):. PubMed ID: 35808489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Range of turbulence-independent propagation and Rayleigh range of partially coherent beams in atmospheric turbulence.
    Dan Y; Zeng S; Hao B; Zhang B
    J Opt Soc Am A Opt Image Sci Vis; 2010 Mar; 27(3):426-34. PubMed ID: 20208932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Widening of Long-range femtosecond laser filaments in turbulent air.
    Ma YY; Lu X; Xi TT; Gong QH; Zhang J
    Opt Express; 2008 Jun; 16(12):8332-41. PubMed ID: 18545547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laser beam self-focusing in turbulent dissipative media.
    Hafizi B; Peñano JR; Palastro JP; Fischer RP; DiComo G
    Opt Lett; 2017 Jan; 42(2):298-301. PubMed ID: 28081097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study on the propagation parameters of Bessel-Gaussian beams carrying optical vortices through atmospheric turbulence.
    Zhu K; Li S; Tang Y; Yu Y; Tang H
    J Opt Soc Am A Opt Image Sci Vis; 2012 Mar; 29(3):251-7. PubMed ID: 22472754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-focusing of femtosecond diffraction-resistant vortex beams in water.
    Shiffler S; Polynkin P; Moloney J
    Opt Lett; 2011 Oct; 36(19):3834-6. PubMed ID: 21964113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perturbative and non-perturbative aspects of optical filamentation in bulk dielectric media.
    Kolesik M; Moloney JV
    Opt Express; 2008 Mar; 16(5):2971-88. PubMed ID: 18542383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Collapse, decay, and single-|k| turbulence from a generalized nonlinear Schrödinger equation.
    Cui S; Yu MY; Zhao D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):053104. PubMed ID: 23767640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatiotemporal moving focus of long femtosecond-laser filaments in air.
    Xi TT; Lu X; Zhang J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 2):055401. PubMed ID: 19113181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Propagation of vector vortex beams through a turbulent atmosphere.
    Cheng W; Haus JW; Zhan Q
    Opt Express; 2009 Sep; 17(20):17829-36. PubMed ID: 19907570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Approximate analyses of the refractive attenuation of laser beam intensities by turbulent absorbing media.
    Wohlers MR
    Appl Opt; 1972 Jun; 11(6):1389-98. PubMed ID: 20119151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Propagation of finite amplitude sound through turbulence: modeling with geometrical acoustics and the parabolic approximation.
    Blanc-Benon P; Lipkens B; Dallois L; Hamilton MF; Blackstock DT
    J Acoust Soc Am; 2002 Jan; 111(1 Pt 2):487-98. PubMed ID: 11837954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expressing oceanic turbulence parameters by atmospheric turbulence structure constant.
    Baykal Y
    Appl Opt; 2016 Feb; 55(6):1228-31. PubMed ID: 26906572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laboratory-scale experiment to study nonlinear N-wave distortion by thermal turbulence.
    Salze É; Yuldashev P; Ollivier S; Khokhlova V; Blanc-Benon P
    J Acoust Soc Am; 2014 Aug; 136(2):556-66. PubMed ID: 25096090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drift-free kinetic equations for turbulent dispersion.
    Bragg A; Swailes DC; Skartlien R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056306. PubMed ID: 23214875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.