These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 31510410)

  • 1. Above and beyond: holographic tracking of axial displacements in holographic optical tweezers.
    O'Brien MJ; Grier DG
    Opt Express; 2019 Sep; 27(18):25375-25383. PubMed ID: 31510410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Particle tracking stereomicroscopy in optical tweezers: control of trap shape.
    Bowman R; Gibson G; Padgett M
    Opt Express; 2010 May; 18(11):11785-90. PubMed ID: 20589039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multidimensional optical fractionation of colloidal particles with holographic verification.
    Xiao K; Grier DG
    Phys Rev Lett; 2010 Jan; 104(2):028302. PubMed ID: 20366628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional parallel particle manipulation and tracking by integrating holographic optical tweezers and engineered point spread functions.
    Conkey DB; Trivedi RP; Pavani SR; Smalyukh II; Piestun R
    Opt Express; 2011 Feb; 19(5):3835-42. PubMed ID: 21369208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of external forces on discrete motion within holographic optical tweezers.
    Eriksson E; Keen S; Leach J; Goksör M; Padgett MJ
    Opt Express; 2007 Dec; 15(26):18268-74. PubMed ID: 19551124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observation of asymmetrically dynamic motion of single colloidal particles in a polarized optical trap.
    Xie C; Dinno MA; Li YQ
    Opt Express; 2005 Mar; 13(5):1621-7. PubMed ID: 19495037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling between axial and radial motions of microscopic particle trapped in the intracavity optical tweezers.
    Xiao G; Kuang T; Luo B; Xiong W; Han X; Chen X; Luo H
    Opt Express; 2019 Dec; 27(25):36653-36661. PubMed ID: 31873439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Holographic analysis of colloidal spheres sedimenting in horizontal slit pores.
    Altman LE; Grier DG
    Phys Rev E; 2022 Oct; 106(4-1):044605. PubMed ID: 36397531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Position clamping in a holographic counterpropagating optical trap.
    Bowman R; Jesacher A; Thalhammer G; Gibson G; Ritsch-Marte M; Padgett M
    Opt Express; 2011 May; 19(10):9908-14. PubMed ID: 21643247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stretching single DNA molecules to demonstrate high-force capabilities of holographic optical tweezers.
    Farré A; van der Horst A; Blab GA; Downing BP; Forde NR
    J Biophotonics; 2010 Apr; 3(4):224-33. PubMed ID: 20151444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual-beam intracavity optical tweezers with all-optical independent axial and radial self-feedback control schemes.
    Kuang T; Liu Z; Xiong W; Han X; Xiao G; Chen X; Yang K; Luo H
    Opt Express; 2021 Sep; 29(19):29936-29945. PubMed ID: 34614727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sorting colloidal particles into multiple channels with optical forces: prismatic optical fractionation.
    Xiao K; Grier DG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 1):051407. PubMed ID: 21230479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Servo control of an optical trap.
    Wulff KD; Cole DG; Clark RL
    Appl Opt; 2007 Aug; 46(22):4923-31. PubMed ID: 17676096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Axial optical trapping forces on two particles trapped simultaneously by optical tweezers.
    Xu S; Li Y; Lou L
    Appl Opt; 2005 May; 44(13):2667-72. PubMed ID: 15881076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Holographic optical tweezers combined with back-focal-plane displacement detection.
    Marsà F; Farré A; Martín-Badosa E; Montes-Usategui M
    Opt Express; 2013 Dec; 21(25):30282-94. PubMed ID: 24514607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of forces and displacements along the axial direction in an optical trap.
    Deufel C; Wang MD
    Biophys J; 2006 Jan; 90(2):657-67. PubMed ID: 16258039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dexterous holographic trapping of dark-seeking particles with Zernike holograms.
    Abacousnac J; Grier DG
    Opt Express; 2022 Jun; 30(13):23568-23578. PubMed ID: 36225033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Revisit on dynamic radiation forces induced by pulsed Gaussian beams.
    Wang LG; Chai HS
    Opt Express; 2011 Jul; 19(15):14389-402. PubMed ID: 21934801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resolving stable axial trapping points of nanowires in an optical tweezers using photoluminescence mapping.
    Wang F; Toe WJ; Lee WM; McGloin D; Gao Q; Tan HH; Jagadish C; Reece PJ
    Nano Lett; 2013 Mar; 13(3):1185-91. PubMed ID: 23394286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aberration correction in holographic optical tweezers.
    Wulff KD; Cole DG; Clark RL; Dileonardo R; Leach J; Cooper J; Gibson G; Padgett MJ
    Opt Express; 2006 May; 14(9):4169-74. PubMed ID: 19516565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.