These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 31510449)

  • 1. Fourier spectra for nonuniform phase-shifting algorithms based on principal component analysis.
    Servin M; Padilla M; Garnica G; Paez G
    Opt Express; 2019 Sep; 27(18):25861-25871. PubMed ID: 31510449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial carrier interferometry from M temporal phase shifted interferograms: Squeezing Interferometry.
    Servin M; Cywiak M; Malacara-Hernandez D; Estrada JC; Quiroga JA
    Opt Express; 2008 Jun; 16(13):9276-83. PubMed ID: 18575491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of nonlinearly spaced phase-shifting algorithms using their frequency transfer function.
    Servin M; Padilla M; Garnica G; Paez G
    Appl Opt; 2019 Feb; 58(4):1134-1138. PubMed ID: 30874164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Local adaptable quadrature filters to demodulate single fringe patterns with closed fringes.
    Estrada JC; Servin M; Marroquín JL
    Opt Express; 2007 Mar; 15(5):2288-98. PubMed ID: 19532463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase-stepping algorithms for synchronous demodulation of nonlinear phase-shifted fringes.
    Servin M; Padilla M; Choque I; Ordones S
    Opt Express; 2019 Feb; 27(4):5824-5834. PubMed ID: 30876177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of multi-wavelength temporal phase-shifting algorithms optimized for high signal-to-noise ratio and high detuning robustness using the frequency transfer function.
    Servin M; Padilla M; Garnica G
    Opt Express; 2016 May; 24(9):9766-80. PubMed ID: 27137591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of principal component analysis in phase-shifting photoelasticity.
    Quiroga JA; Gómez-Pedrero JA
    Opt Express; 2016 Mar; 24(6):5984-95. PubMed ID: 27136792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tukey's robust M-estimator for phase demodulation of interferograms with nonuniform shifts.
    Ordones S; Servin M; Padilla M; Choque I; Muñoz A; Flores JL
    Appl Opt; 2020 Jul; 59(20):6224-6230. PubMed ID: 32672771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incremental PCA algorithm for fringe pattern demodulation.
    Gómez-Pedrero JA; Estrada JC; Alonso J; Quiroga JA; Vargas J
    Opt Express; 2022 Apr; 30(8):12278-12293. PubMed ID: 35472866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial dual-orthogonal (SDO) phase-shifting algorithm by pre-recomposing the interference fringe.
    Wang Y; Li B; Zhong L; Tian J; Lu X
    Opt Express; 2017 Jul; 25(15):17446-17456. PubMed ID: 28789236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving principal component analysis based phase extraction method for phase-shifting interferometry by integrating spatial information.
    Yatabe K; Ishikawa K; Oikawa Y
    Opt Express; 2016 Oct; 24(20):22881-22891. PubMed ID: 27828355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fourier analysis of RGB fringe-projection profilometry and robust phase-demodulation methods against crosstalk distortion.
    Padilla M; Servin M; Garnica G
    Opt Express; 2016 Jul; 24(14):15417-28. PubMed ID: 27410817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectral analysis for the generalized least squares phase-shifting algorithms with harmonic robustness.
    Ordones S; Servin M; Padilla M; Muñoz A; Flores JL; Choque I
    Opt Lett; 2019 May; 44(9):2358-2361. PubMed ID: 31042223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synchronous phase-demodulation and harmonic rejection of 9-step pixelated dynamic interferograms.
    Padilla JM; Servin M; Estrada JC
    Opt Express; 2012 May; 20(11):11734-9. PubMed ID: 22714161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase-shifting shadow moiré based on iterative self-tuning algorithm.
    Du H; Zhao H; Li B; Zhao J; Cao S
    Appl Opt; 2011 Dec; 50(36):6708-12. PubMed ID: 22193203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regularized quadrature and phase tracking from a single closed-fringe interferogram.
    Servin M; Marroquin JL; Quiroga JA
    J Opt Soc Am A Opt Image Sci Vis; 2004 Mar; 21(3):411-9. PubMed ID: 15005406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Precise phase demodulation of single carrier-frequency interferogram by pixel-level Lissajous figure and ellipse fitting.
    Liu F; Wu Y; Wu F; König N; Schmitt R; Wan Y; Xu Y
    Sci Rep; 2018 Jan; 8(1):148. PubMed ID: 29317725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase measurement of nonuniform phase-shifted interferograms using the frequency transfer function.
    Choque I; Servin M; Padilla M; Asmad M; Ordones S
    Appl Opt; 2019 May; 58(15):4157-4162. PubMed ID: 31158173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-shot fringe pattern phase-amplitude demodulation using Gram-Schmidt orthonormalization with Hilbert-Huang pre-filtering.
    Trusiak M; Patorski K
    Opt Express; 2015 Feb; 23(4):4672-90. PubMed ID: 25836505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Steerable spatial phase shifting applied to single-image closed-fringe interferograms.
    Quiroga JA; Servin M; Estrada JC; Gomez-Pedrero JA
    Appl Opt; 2009 Apr; 48(12):2401-9. PubMed ID: 19381193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.