These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 31510484)
41. Influence of periodic texture profile and parameters for enhanced light absorption in amorphous silicon ultra-thin solar cells. Joseph S; Joseph J Appl Opt; 2017 Jun; 56(17):5013-5022. PubMed ID: 29047649 [TBL] [Abstract][Full Text] [Related]
42. Embedded biomimetic nanostructures for enhanced optical absorption in thin-film solar cells. Tsai MA; Han HW; Tsai YL; Tseng PC; Yu P; Kuo HC; Shen CH; Shieh JM; Lin SH Opt Express; 2011 Jul; 19 Suppl 4():A757-62. PubMed ID: 21747544 [TBL] [Abstract][Full Text] [Related]
43. Broadband near-infrared TiO Zhu Y; Lan T; Liu P; Yang J Appl Opt; 2019 Sep; 58(26):7134-7138. PubMed ID: 31503985 [TBL] [Abstract][Full Text] [Related]
44. Mid-to-far infrared tunable perfect absorption by a sub - λ/100 nanofilm in a fractal phasor resonant cavity. Toudert J; Serna R; Pardo MG; Ramos N; Peláez RJ; Maté B Opt Express; 2018 Dec; 26(26):34043-34059. PubMed ID: 30650834 [TBL] [Abstract][Full Text] [Related]
45. A near-ideal solar selective absorber with strong broadband optical absorption from UV to NIR. Jiang X; Wang T; Zhong Q; Yan R; Huang X Nanotechnology; 2020 Jul; 31(31):315202. PubMed ID: 32289755 [TBL] [Abstract][Full Text] [Related]
46. Metasurface Color Filters Using Aluminum and Lithium Niobate Configurations. Lin YS; Dai J; Zeng Z; Yang BR Nanoscale Res Lett; 2020 Apr; 15(1):77. PubMed ID: 32274605 [TBL] [Abstract][Full Text] [Related]
47. Sinusoidal nanotextures for light management in silicon thin-film solar cells. Köppel G; Rech B; Becker C Nanoscale; 2016 Apr; 8(16):8722-8. PubMed ID: 27065440 [TBL] [Abstract][Full Text] [Related]
48. Optoelectronic refractometric sensing device for gases based on dielectric bow-ties and amorphous silicon solar cells. Elshorbagy MH; Esteban Ó; Cuadrado A; Alda J Sci Rep; 2022 Nov; 12(1):18355. PubMed ID: 36319645 [TBL] [Abstract][Full Text] [Related]
49. Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells. Imahori H; Umeyama T; Ito S Acc Chem Res; 2009 Nov; 42(11):1809-18. PubMed ID: 19408942 [TBL] [Abstract][Full Text] [Related]
50. Light-trapping design of graphene transparent electrodes for efficient thin-film silicon solar cells. Zhao Y; Chen F; Shen Q; Zhang L Appl Opt; 2012 Sep; 51(25):6245-51. PubMed ID: 22945173 [TBL] [Abstract][Full Text] [Related]
51. Perfect Optical Absorbers by All-Dielectric Photonic Crystal/Metal Heterostructures Due to Optical Tamm State. Lu G; Zhang K; Zhao Y; Zhang L; Shang Z; Zhou H; Diao C; Zhou X Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947796 [TBL] [Abstract][Full Text] [Related]
52. Numerical Study of an Efficient Solar Absorber Consisting of Metal Nanoparticles. Liu C; Zhang D; Liu Y; Wu D; Chen L; Ma R; Yu Z; Yu L; Ye H Nanoscale Res Lett; 2017 Nov; 12(1):601. PubMed ID: 29168003 [TBL] [Abstract][Full Text] [Related]
53. Enhanced coupling of broadband light into amorphous silicon via periodic nanoplasmonic arrays. Liberman V; Parameswaran L; Rothschild M; Ait-El-Aoud Y; Luce A; Okamoto M; Willcox WB; Giardini S; Osgood RM Nanotechnology; 2018 Sep; 29(38):385206. PubMed ID: 29956677 [TBL] [Abstract][Full Text] [Related]
54. Absorption enhancement in methylammonium lead iodide perovskite solar cells with embedded arrays of dielectric particles. Jiménez-Solano A; Carretero-Palacios S; Míguez H Opt Express; 2018 Sep; 26(18):A865-A878. PubMed ID: 30184939 [TBL] [Abstract][Full Text] [Related]
55. Optical absorption enhancement in a hybrid system photonic crystal - thin substrate for photovoltaic applications. Buencuerpo J; Munioz-Camuniez LE; Dotor ML; Postigo PA Opt Express; 2012 Jul; 20 Suppl 4():A452-64. PubMed ID: 22828614 [TBL] [Abstract][Full Text] [Related]
56. Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region. Wu D; Liu C; Liu Y; Yu L; Yu Z; Chen L; Ma R; Ye H Opt Lett; 2017 Feb; 42(3):450-453. PubMed ID: 28146499 [TBL] [Abstract][Full Text] [Related]
57. Design of dual-diameter nanoholes for efficient solar-light harvesting. Zhang C; Li X; Shang A; Wu S; Zhan Y; Yang Z Nanoscale Res Lett; 2014; 9(1):481. PubMed ID: 25258605 [TBL] [Abstract][Full Text] [Related]
58. All-dielectric metamaterials. Jahani S; Jacob Z Nat Nanotechnol; 2016 Jan; 11(1):23-36. PubMed ID: 26740041 [TBL] [Abstract][Full Text] [Related]
59. A light-trapping strategy for nanocrystalline silicon thin-film solar cells using three-dimensionally assembled nanoparticle structures. Ha K; Jang E; Jang S; Lee JK; Jang MS; Choi H; Cho JS; Choi M Nanotechnology; 2016 Feb; 27(5):055403. PubMed ID: 26751935 [TBL] [Abstract][Full Text] [Related]
60. Incident-angle-controlled semitransparent colored perovskite solar cells with improved efficiency exploiting a multilayer dielectric mirror. Lee KT; Jang JY; Park SJ; Ok SA; Park HJ Nanoscale; 2017 Sep; 9(37):13983-13989. PubMed ID: 28920127 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]