These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 31510497)

  • 41. Estimation of phytoplankton production from space: current status and future potential of satellite remote sensing.
    Joint I; Groom SB
    J Exp Mar Biol Ecol; 2000 Jul; 250(1-2):233-255. PubMed ID: 10969171
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Multi-sensor satellite and in situ monitoring of phytoplankton development in a eutrophic-mesotrophic lake.
    Dörnhöfer K; Klinger P; Heege T; Oppelt N
    Sci Total Environ; 2018 Jan; 612():1200-1214. PubMed ID: 28892864
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Phytoplankton monitoring by high performance flow cytometry: a successful approach?
    Rutten TP; Sandee B; Hofman AR
    Cytometry A; 2005 Mar; 64(1):16-26. PubMed ID: 15688354
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Eukaryotic Micro-plankton Community Diversity and Characteristics of Regional Distribution in the Yellow Sea by ITS High-throughput Sequencing].
    Zhang L; Lin JN; Zhang Y; Wang SP; Zhang XJ
    Huan Jing Ke Xue; 2018 May; 39(5):2368-2379. PubMed ID: 29965538
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Resolving phytoplankton taxa based on high-throughput sequencing during brown tides in the Bohai Sea, China.
    Chen ZF; Zhang QC; Kong FZ; Liu Y; Zhao Y; Zhou ZX; Geng HX; Dai L; Zhou MJ; Yu RC
    Harmful Algae; 2019 Apr; 84():127-138. PubMed ID: 31128797
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Multivariate approach for the retrieval of phytoplankton size structure from measured light absorption spectra in the Mediterranean Sea (BOUSSOLE site).
    Organelli E; Bricaud A; Antoine D; Uitz J
    Appl Opt; 2013 Apr; 52(11):2257-73. PubMed ID: 23670753
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Optical characterization of marine phytoplankton assemblages within surface waters of the western Arctic Ocean.
    Reynolds RA; Stramski D
    Limnol Oceanogr; 2019 Nov; 64(6):2478-2496. PubMed ID: 31894158
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The Influence of Temperature and Community Structure on Light Absorption by Phytoplankton in the North Atlantic.
    J W Brewin R; Ciavatta S; Sathyendranath S; Skákala J; Bruggeman J; Ford D; Platt T
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31561600
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Species identification of mixed algal bloom in the Northern Arabian Sea using remote sensing techniques.
    Dwivedi R; Rafeeq M; Smitha BR; Padmakumar KB; Thomas LC; Sanjeevan VN; Prakash P; Raman M
    Environ Monit Assess; 2015 Feb; 187(2):51. PubMed ID: 25638059
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Disentangling physical and biological drivers of phytoplankton dynamics in a coastal system.
    Cianelli D; D'Alelio D; Uttieri M; Sarno D; Zingone A; Zambianchi E; d'Alcalà MR
    Sci Rep; 2017 Nov; 7(1):15868. PubMed ID: 29158517
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Optical remote sensing of marine constituents in coastal waters: a feasibility study.
    Frette O; Stamnes JJ; Stamnes K
    Appl Opt; 1998 Dec; 37(36):8318-26. PubMed ID: 18301654
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Contrasting Photophysiological Characteristics of Phytoplankton Assemblages in the Northern South China Sea.
    Jin P; Gao G; Liu X; Li F; Tong S; Ding J; Zhong Z; Liu N; Gao K
    PLoS One; 2016; 11(5):e0153555. PubMed ID: 27195824
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The effects of a PSII inhibitor on phytoplankton community structure as assessed by HPLC pigment analyses, microscopy and flow cytometry.
    Devilla RA; Brown MT; Donkin M; Readman JW
    Aquat Toxicol; 2005 Jan; 71(1):25-38. PubMed ID: 15642629
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Determination of phytoplankton abundances (Chlorophyll-a) in the optically complex inland water - The Baltic Sea.
    Zhang D; Lavender S; Muller JP; Walton D; Karlson B; Kronsell J
    Sci Total Environ; 2017 Dec; 601-602():1060-1074. PubMed ID: 28599362
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Assessment of a bidirectional reflectance distribution correction of above-water and satellite water-leaving radiance in coastal waters.
    Hlaing S; Gilerson A; Harmel T; Tonizzo A; Weidemann A; Arnone R; Ahmed S
    Appl Opt; 2012 Jan; 51(2):220-37. PubMed ID: 22270520
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Estimation of Chlorophyll-a Concentration and the Trophic State of the Barra Bonita Hydroelectric Reservoir Using OLI/Landsat-8 Images.
    Watanabe FS; Alcântara E; Rodrigues TW; Imai NN; Barbosa CC; Rotta LH
    Int J Environ Res Public Health; 2015 Aug; 12(9):10391-417. PubMed ID: 26322489
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Remote sensing of bacterial response to degrading phytoplankton in the Arabian Sea.
    Priyaja P; Dwivedi R; Sini S; Hatha M; Saravanane N; Sudhakar M
    Environ Monit Assess; 2016 Dec; 188(12):662. PubMed ID: 27837363
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Retrieval of chlorophyll from remote-sensing reflectance in the china seas.
    He MX; Liu ZS; Du KP; Li LP; Chen R; Carder KL; Lee ZP
    Appl Opt; 2000 May; 39(15):2467-74. PubMed ID: 18345161
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Nutrient distributions and their limitation on phytoplankton in the Yellow Sea and the East China Sea].
    Wang B
    Ying Yong Sheng Tai Xue Bao; 2003 Jul; 14(7):1122-6. PubMed ID: 14587334
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Remote estimation of cyanobacteria-dominance in inland waters.
    Shi K; Zhang Y; Li Y; Li L; Lv H; Liu X
    Water Res; 2015 Jan; 68():217-26. PubMed ID: 25462730
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.