BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 31510499)

  • 1. Calibration of the LISST-VSF to derive the volume scattering functions in clear waters.
    Hu L; Zhang X; Xiong Y; He MX
    Opt Express; 2019 Aug; 27(16):A1188-A1206. PubMed ID: 31510499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural network approach for correction of multiple scattering errors in the LISST-VSF instrument.
    Ugulen HS; Koestner D; Sandven H; Hamre B; Kristoffersen AS; Saetre C
    Opt Express; 2023 Sep; 31(20):32737-32751. PubMed ID: 37859069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ measurements of the volume scattering function with LISST-VSF and LISST-200X in extreme environments: evaluation of instrument calibration and validity.
    Sandven H; Kristoffersen AS; Chen YC; Hamre B
    Opt Express; 2020 Dec; 28(25):37373-37396. PubMed ID: 33379574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calibrated near-forward volume scattering function obtained from the LISST particle sizer.
    Slade WH; Boss ES
    Opt Express; 2006 Apr; 14(8):3602-15. PubMed ID: 19516507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of optically derived particle size distributions: scattering over the full angular range versus diffraction at near forward angles.
    Zhang X; Gray DJ; Huot Y; You Y; Bi L
    Appl Opt; 2012 Jul; 51(21):5085-99. PubMed ID: 22858949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of multiple scattering errors in LISST-VSF volume scattering function measurements using Monte Carlo simulations and experimental data.
    Ugulen HS; Sandven H; Hamre B; Kristoffersen AS; Sætre C
    Opt Express; 2021 Apr; 29(8):12413-12428. PubMed ID: 33985001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Instrument for in situ synchronous measurement of the multi-angle volume scattering function and attenuation coefficient.
    Liu C; Li C; Zhao W; Chen F; Yang Z; Zhang X; Zhang Y; Zhou W; Cao W; Yu L; Xing H
    Opt Express; 2023 Jan; 31(1):248-264. PubMed ID: 36606964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of the particle size distribution obtained with the laser in-situ scattering and transmission (LISST) meter in flow-through mode.
    Boss E; Haëntjens N; Westberry TK; Karp-Boss L; Slade WH
    Opt Express; 2018 Apr; 26(9):11125-11136. PubMed ID: 29716037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of the angular shape of the volume-scattering function and multiple scattering on remote sensing reflectance.
    Chami M; McKee D; Leymarie E; Khomenko G
    Appl Opt; 2006 Dec; 45(36):9210-20. PubMed ID: 17151762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An instrument for in situ measuring the volume scattering function of water: design, calibration and primary experiments.
    Li C; Cao W; Yu J; Ke T; Lu G; Yang Y; Guo C
    Sensors (Basel); 2012; 12(4):4514-33. PubMed ID: 22666043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Angular shape of the oceanic particulate volume scattering function in the backward direction.
    Sullivan JM; Twardowski MS
    Appl Opt; 2009 Dec; 48(35):6811-9. PubMed ID: 20011022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size distribution, sources, and seasonality of suspended particles in southern California marine bathing waters.
    Ahn JH; Grant SB
    Environ Sci Technol; 2007 Feb; 41(3):695-702. PubMed ID: 17328172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laboratory experiments for inter-comparison of three volume scattering meters to measure angular scattering properties of hydrosols.
    Harmel T; Hieronymi M; Slade W; Röttgers R; Roullier F; Chami M
    Opt Express; 2016 Jan; 24(2):A234-56. PubMed ID: 26832578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interpretation of scattering by oceanic particles around 120 degrees and its implication in ocean color studies.
    Zhang X; Fournier GR; Gray DJ
    Opt Express; 2017 Feb; 25(4):A191-A199. PubMed ID: 28241629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variability of relationship between the volume scattering function at 180° and the backscattering coefficient for aquatic particles.
    Hu L; Zhang X; Xiong Y; Gray DJ; He MX
    Appl Opt; 2020 Apr; 59(10):C31-C41. PubMed ID: 32400563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. POLVSM (Polarized Volume Scattering Meter) instrument: an innovative device to measure the directional and polarized scattering properties of hydrosols.
    Chami M; Thirouard A; Harmel T
    Opt Express; 2014 Oct; 22(21):26403-28. PubMed ID: 25401673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parameterization of volume scattering function of coastal waters based on the statistical approach.
    Sokolov A; Chami M; Dmitriev E; Khomenko G
    Opt Express; 2010 Mar; 18(5):4615-36. PubMed ID: 20389474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing uncertainties in scattering correction algorithms for reflective tube absorption measurements made with a WET Labs ac-9.
    Stockley ND; Röttgers R; McKee D; Lefering I; Sullivan JM; Twardowski MS
    Opt Express; 2017 Nov; 25(24):A1139-A1153. PubMed ID: 29220991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new approach to measure the volume scattering function.
    Tan H; Doerffer R; Oishi T; Tanaka A
    Opt Express; 2013 Aug; 21(16):18697-711. PubMed ID: 23938786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient Monte Carlo simulation reveals significant multiple scattering errors in underwater angular scattering measurements.
    Ugulen HS; Sandven H; Hamre B; Kristoffersen AS; Sætre C
    Opt Express; 2022 Mar; 30(7):10802-10817. PubMed ID: 35473039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.