These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 31510500)

  • 1. Realization of phase locking in good-bad-cavity active optical clock.
    Shi T; Pan D; Chen J
    Opt Express; 2019 Aug; 27(16):22040-22052. PubMed ID: 31510500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual-Wavelength Good-Bad-Cavity Laser System for Cavity-Stabilized Active Optical Clock.
    Pan D; Shi T; Chen J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Oct; 65(10):1958-1964. PubMed ID: 30004873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A highly integrated single-mode 1064 nm laser with 8.5 kHz linewidth for dual-wavelength active optical clock.
    Shi T; Pan D; Chang P; Shang H; Chen J
    Rev Sci Instrum; 2018 Apr; 89(4):043102. PubMed ID: 29716323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated multiple wavelength stabilization on a multi-channel cavity for a transportable optical clock.
    Wang S; Cao J; Yuan J; Liu D; Shu H; Huang X
    Opt Express; 2020 Apr; 28(8):11852-11860. PubMed ID: 32403687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 1 Hz linewidth Ti:sapphire laser as local oscillator for (40)Ca(+) optical clocks.
    Bian W; Huang Y; Guan H; Liu P; Ma L; Gao K
    Rev Sci Instrum; 2016 Jun; 87(6):063121. PubMed ID: 27370440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple wavelength stabilization on a single optical cavity using the offset sideband locking technique.
    Milani G; Rauf B; Barbieri P; Bregolin F; Pizzocaro M; Thoumany P; Levi F; Calonico D
    Opt Lett; 2017 May; 42(10):1970-1973. PubMed ID: 28504726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coherent photo-thermal noise cancellation in a dual-wavelength optical cavity for narrow-linewidth laser frequency stabilisation.
    Dawel F; Wilzewski A; Herbers S; Pelzer L; Kramer J; Hild MB; Dietze K; Krinner L; Spethmann NCH; Schmidt PO
    Opt Express; 2024 Feb; 32(5):7276-7288. PubMed ID: 38439412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopy of 171Yb in an optical lattice based on laser linewidth transfer using a narrow linewidth frequency comb.
    Inaba H; Hosaka K; Yasuda M; Nakajima Y; Iwakuni K; Akamatsu D; Okubo S; Kohno T; Onae A; Hong FL
    Opt Express; 2013 Apr; 21(7):7891-6. PubMed ID: 23571880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase-coherent asynchronous optical sampling system.
    Yang H; Zhang S; Zhao H; Ge J
    Opt Express; 2020 Nov; 28(24):37040-37048. PubMed ID: 33379785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-amplified lock of an ultra-narrow linewidth optical cavity.
    Izumi K; Sigg D; Barsotti L
    Opt Lett; 2014 Sep; 39(18):5285-8. PubMed ID: 26466252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active Faraday optical frequency standard.
    Zhuang W; Chen J
    Opt Lett; 2014 Nov; 39(21):6339-42. PubMed ID: 25361349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Locking Multi-Laser Frequencies to a Precision Wavelength Meter: Application to Cold Atoms.
    Kim J; Kim K; Lee D; Shin Y; Kang S; Kim JR; Choi Y; An K; Lee M
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Narrow-linewidth light source for a coherent Raman transfer of ultracold molecules.
    Aikawa K; Kobayashi J; Oasa K; Kishimoto T; Ueda M; Inouye S
    Opt Express; 2011 Jul; 19(15):14479-86. PubMed ID: 21934810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectral narrowing effect by quasi-phase continuous tuning in high-speed wavelength-swept light source.
    Chong C; Suzuki T; Morosawa A; Sakai T
    Opt Express; 2008 Dec; 16(25):21105-18. PubMed ID: 19065251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust frequency stabilization and linewidth narrowing of a laser with large intermittent frequency jumps using an optical cavity and an atomic beam.
    Lee WK; Yong Park C; Heo MS; Yu DH; Kim H
    Appl Opt; 2020 Oct; 59(28):8918-8924. PubMed ID: 33104578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of wavelength-swept active mode locking fiber laser based on reflective semiconductor optical amplifier.
    Don Lee H; Lee JH; Jeong MY; Kim CS
    Opt Express; 2011 Jul; 19(15):14586-93. PubMed ID: 21934821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical feedback cavity enhanced absorption spectroscopy with diode lasers.
    Baran SG; Hancock G; Peverall R; Ritchie GA; van Leeuwen NJ
    Analyst; 2009 Feb; 134(2):243-9. PubMed ID: 19173044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-external-cavity distributed Bragg reflector laser with subkilohertz intrinsic linewidth.
    Lin Q; Van Camp MA; Zhang H; Jelenković B; Vuletić V
    Opt Lett; 2012 Jun; 37(11):1989-91. PubMed ID: 22660097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sub-kilohertz linewidth narrowing of a mid-infrared optical parametric oscillator idler frequency by direct cavity stabilization.
    Ricciardi I; Mosca S; Parisi M; Maddaloni P; Santamaria L; De Natale P; De Rosa M
    Opt Lett; 2015 Oct; 40(20):4743-6. PubMed ID: 26469609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subkilohertz linewidth reduction of a DFB diode laser using self-injection locking with a fiber Bragg grating Fabry-Perot cavity.
    Wei F; Yang F; Zhang X; Xu D; Ding M; Zhang L; Chen D; Cai H; Fang Z; Xijia G
    Opt Express; 2016 Jul; 24(15):17406-15. PubMed ID: 27464187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.