These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 31510654)
1. PRECISE: a domain adaptation approach to transfer predictors of drug response from pre-clinical models to tumors. Mourragui S; Loog M; van de Wiel MA; Reinders MJT; Wessels LFA Bioinformatics; 2019 Jul; 35(14):i510-i519. PubMed ID: 31510654 [TBL] [Abstract][Full Text] [Related]
2. Predicting Cancer Drug Response using a Recommender System. Suphavilai C; Bertrand D; Nagarajan N Bioinformatics; 2018 Nov; 34(22):3907-3914. PubMed ID: 29868820 [TBL] [Abstract][Full Text] [Related]
3. TUGDA: task uncertainty guided domain adaptation for robust generalization of cancer drug response prediction from in vitro to in vivo settings. Peres da Silva R; Suphavilai C; Nagarajan N Bioinformatics; 2021 Aug; 37(Supplement_1):i76-i83. PubMed ID: 34000002 [TBL] [Abstract][Full Text] [Related]
4. Kernelized rank learning for personalized drug recommendation. He X; Folkman L; Borgwardt K Bioinformatics; 2018 Aug; 34(16):2808-2816. PubMed ID: 29528376 [TBL] [Abstract][Full Text] [Related]
5. AITL: Adversarial Inductive Transfer Learning with input and output space adaptation for pharmacogenomics. Sharifi-Noghabi H; Peng S; Zolotareva O; Collins CC; Ester M Bioinformatics; 2020 Jul; 36(Suppl_1):i380-i388. PubMed ID: 32657371 [TBL] [Abstract][Full Text] [Related]
6. Predicting patient response with models trained on cell lines and patient-derived xenografts by nonlinear transfer learning. Mourragui SMC; Loog M; Vis DJ; Moore K; Manjon AG; van de Wiel MA; Reinders MJT; Wessels LFA Proc Natl Acad Sci U S A; 2021 Dec; 118(49):. PubMed ID: 34873056 [TBL] [Abstract][Full Text] [Related]
7. A novel approach for drug response prediction in cancer cell lines via network representation learning. Yang J; Li A; Li Y; Guo X; Wang M Bioinformatics; 2019 May; 35(9):1527-1535. PubMed ID: 30304378 [TBL] [Abstract][Full Text] [Related]
9. Global proteomics profiling improves drug sensitivity prediction: results from a multi-omics, pan-cancer modeling approach. Ali M; Khan SA; Wennerberg K; Aittokallio T Bioinformatics; 2018 Apr; 34(8):1353-1362. PubMed ID: 29186355 [TBL] [Abstract][Full Text] [Related]
10. TANDEM: a two-stage approach to maximize interpretability of drug response models based on multiple molecular data types. Aben N; Vis DJ; Michaut M; Wessels LF Bioinformatics; 2016 Sep; 32(17):i413-i420. PubMed ID: 27587657 [TBL] [Abstract][Full Text] [Related]
11. RWEN: response-weighted elastic net for prediction of chemosensitivity of cancer cell lines. Basu A; Mitra R; Liu H; Schreiber SL; Clemons PA Bioinformatics; 2018 Oct; 34(19):3332-3339. PubMed ID: 29688307 [TBL] [Abstract][Full Text] [Related]
12. Modeling gene-wise dependencies improves the identification of drug response biomarkers in cancer studies. Nikolova O; Moser R; Kemp C; Gönen M; Margolin AA Bioinformatics; 2017 May; 33(9):1362-1369. PubMed ID: 28082455 [TBL] [Abstract][Full Text] [Related]
16. Domain-invariant features for mechanism of action prediction in a multi-cell-line drug screen. Boyd JC; Pinheiro A; Del Nery E; Reyal F; Walter T Bioinformatics; 2020 Mar; 36(5):1607-1613. PubMed ID: 31608933 [TBL] [Abstract][Full Text] [Related]
17. CMScaller: an R package for consensus molecular subtyping of colorectal cancer pre-clinical models. Eide PW; Bruun J; Lothe RA; Sveen A Sci Rep; 2017 Nov; 7(1):16618. PubMed ID: 29192179 [TBL] [Abstract][Full Text] [Related]
18. Association mapping in biomedical time series via statistically significant shapelet mining. Bock C; Gumbsch T; Moor M; Rieck B; Roqueiro D; Borgwardt K Bioinformatics; 2018 Jul; 34(13):i438-i446. PubMed ID: 29949972 [TBL] [Abstract][Full Text] [Related]
19. Molecular heterogeneity of non-small cell lung carcinoma patient-derived xenografts closely reflect their primary tumors. Wang D; Pham NA; Tong J; Sakashita S; Allo G; Kim L; Yanagawa N; Raghavan V; Wei Y; To C; Trinh QM; Starmans MH; Chan-Seng-Yue MA; Chadwick D; Li L; Zhu CQ; Liu N; Li M; Lee S; Ignatchenko V; Strumpf D; Taylor P; Moghal N; Liu G; Boutros PC; Kislinger T; Pintilie M; Jurisica I; Shepherd FA; McPherson JD; Muthuswamy L; Moran MF; Tsao MS Int J Cancer; 2017 Feb; 140(3):662-673. PubMed ID: 27750381 [TBL] [Abstract][Full Text] [Related]
20. Dr.VAE: improving drug response prediction via modeling of drug perturbation effects. Rampášek L; Hidru D; Smirnov P; Haibe-Kains B; Goldenberg A Bioinformatics; 2019 Oct; 35(19):3743-3751. PubMed ID: 30850846 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]