These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 31510691)

  • 1. Precise modelling and interpretation of bioactivities of ligands targeting G protein-coupled receptors.
    Wu J; Liu B; Chan WKB; Wu W; Pang T; Hu H; Yan S; Ke X; Zhang Y
    Bioinformatics; 2019 Jul; 35(14):i324-i332. PubMed ID: 31510691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. WDL-RF: predicting bioactivities of ligand molecules acting with G protein-coupled receptors by combining weighted deep learning and random forest.
    Wu J; Zhang Q; Wu W; Pang T; Hu H; Chan WKB; Ke X; Zhang Y
    Bioinformatics; 2018 Jul; 34(13):2271-2282. PubMed ID: 29432522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Homologous G Protein-Coupled Receptors Boost the Modeling and Interpretation of Bioactivities of Ligand Molecules.
    Wu J; Sun Y; Chan WKB; Zhu Y; Zhu W; Huang W; Hu H; Yan S; Pang T; Ke X; Li F
    J Chem Inf Model; 2020 Mar; 60(3):1865-1875. PubMed ID: 32040913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transfer learning with molecular graph convolutional networks for accurate modeling and representation of bioactivities of ligands targeting GPCRs without sufficient data.
    Wu J; Lan C; Mei Z; Chen X; Zhu Y; Hu H; Diao Y
    Comput Biol Chem; 2022 Jun; 98():107664. PubMed ID: 35325760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GLASS: a comprehensive database for experimentally validated GPCR-ligand associations.
    Chan WK; Zhang H; Yang J; Brender JR; Hur J; Özgür A; Zhang Y
    Bioinformatics; 2015 Sep; 31(18):3035-42. PubMed ID: 25971743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-source transfer learning with Graph Neural Network for excellent modelling the bioactivities of ligands targeting orphan G protein-coupled receptors.
    Huang S; Zheng S; Chen R
    Math Biosci Eng; 2023 Jan; 20(2):2588-2608. PubMed ID: 36899548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. OLB-AC: toward optimizing ligand bioactivities through deep graph learning and activity cliffs.
    Yin Y; Hu H; Yang J; Ye C; Goh WWB; Kong AW; Wu J
    Bioinformatics; 2024 Jun; 40(6):. PubMed ID: 38889277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LS-align: an atom-level, flexible ligand structural alignment algorithm for high-throughput virtual screening.
    Hu J; Liu Z; Yu DJ; Zhang Y
    Bioinformatics; 2018 Jul; 34(13):2209-2218. PubMed ID: 29462237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ResPRE: high-accuracy protein contact prediction by coupling precision matrix with deep residual neural networks.
    Li Y; Hu J; Zhang C; Yu DJ; Zhang Y
    Bioinformatics; 2019 Nov; 35(22):4647-4655. PubMed ID: 31070716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decrypting orphan GPCR drug discovery via multitask learning.
    Huang WC; Lin WT; Hung MS; Lee JC; Tung CW
    J Cheminform; 2024 Jan; 16(1):10. PubMed ID: 38263092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying GPCR-drug interaction based on wordbook learning from sequences.
    Wang P; Huang X; Qiu W; Xiao X
    BMC Bioinformatics; 2020 Apr; 21(1):150. PubMed ID: 32312232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AFSE: towards improving model generalization of deep graph learning of ligand bioactivities targeting GPCR proteins.
    Yin Y; Hu H; Yang Z; Jiang F; Huang Y; Wu J
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35348582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Virtual Screening of Human Class-A GPCRs Using Ligand Profiles Built on Multiple Ligand-Receptor Interactions.
    Chan WKB; Zhang Y
    J Mol Biol; 2020 Aug; 432(17):4872-4890. PubMed ID: 32652079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterizing common substructures of ligands for GPCR protein subfamilies.
    Erguner B; Hattori M; Goto S; Kanehisa M
    Genome Inform; 2010; 24():31-41. PubMed ID: 22081587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RealVS: Toward Enhancing the Precision of Top Hits in Ligand-Based Virtual Screening of Drug Leads from Large Compound Databases.
    Yin Y; Hu H; Yang Z; Xu H; Wu J
    J Chem Inf Model; 2021 Oct; 61(10):4924-4939. PubMed ID: 34619030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NeBcon: protein contact map prediction using neural network training coupled with naïve Bayes classifiers.
    He B; Mortuza SM; Wang Y; Shen HB; Zhang Y
    Bioinformatics; 2017 Aug; 33(15):2296-2306. PubMed ID: 28369334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative Analysis of QSAR-based vs. Chemical Similarity Based Predictors of GPCRs Binding Affinity.
    Luo M; Wang XS; Tropsha A
    Mol Inform; 2016 Jan; 35(1):36-41. PubMed ID: 27491652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recognizing metal and acid radical ion-binding sites by integrating ab initio modeling with template-based transferals.
    Hu X; Dong Q; Yang J; Zhang Y
    Bioinformatics; 2016 Nov; 32(21):3260-3269. PubMed ID: 27378301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GPCRRD: G protein-coupled receptor spatial restraint database for 3D structure modeling and function annotation.
    Zhang J; Zhang Y
    Bioinformatics; 2010 Dec; 26(23):3004-5. PubMed ID: 20926423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FINDSITE(comb): a threading/structure-based, proteomic-scale virtual ligand screening approach.
    Zhou H; Skolnick J
    J Chem Inf Model; 2013 Jan; 53(1):230-40. PubMed ID: 23240691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.