BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 31510706)

  • 1. Using the structure of genome data in the design of deep neural networks for predicting amyotrophic lateral sclerosis from genotype.
    Yin B; Balvert M; van der Spek RAA; Dutilh BE; Bohté S; Veldink J; Schönhuth A
    Bioinformatics; 2019 Jul; 35(14):i538-i547. PubMed ID: 31510706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide analysis of the heritability of amyotrophic lateral sclerosis.
    Keller MF; Ferrucci L; Singleton AB; Tienari PJ; Laaksovirta H; Restagno G; Chiò A; Traynor BJ; Nalls MA
    JAMA Neurol; 2014 Sep; 71(9):1123-34. PubMed ID: 25023141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Classification and Interpretation of Amyotrophic Lateral Sclerosis Using Deep Convolution Neural Networks and Shapley Values.
    Karim A; Su Z; West PK; Keon M; The Nygc Als Consortium ; Shamsani J; Brennan S; Wong T; Milicevic O; Teunisse G; Rad HN; Sattar A
    Genes (Basel); 2021 Oct; 12(11):. PubMed ID: 34828360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Varmole: a biologically drop-connect deep neural network model for prioritizing disease risk variants and genes.
    Nguyen ND; Jin T; Wang D
    Bioinformatics; 2021 Jul; 37(12):1772-1775. PubMed ID: 33031552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Knowledge-Based Machine Learning Approach to Gene Prioritisation in Amyotrophic Lateral Sclerosis.
    Bean DM; Al-Chalabi A; Dobson RJB; Iacoangeli A
    Genes (Basel); 2020 Jun; 11(6):. PubMed ID: 32575372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional fine-mapping of noncoding risk variants in amyotrophic lateral sclerosis utilizing convolutional neural network.
    Yousefian-Jazi A; Sung MK; Lee T; Hong YH; Choi JK; Choi J
    Sci Rep; 2020 Jul; 10(1):12872. PubMed ID: 32732921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Revisiting the complex architecture of ALS in Turkey: Expanding genotypes, shared phenotypes, molecular networks, and a public variant database.
    Tunca C; Şeker T; Akçimen F; Coşkun C; Bayraktar E; Palvadeau R; Zor S; Koçoğlu C; Kartal E; Şen NE; Hamzeiy H; Özoğuz Erimiş A; Norman U; Karakahya O; Olgun G; Akgün T; Durmuş H; Şahin E; Çakar A; Başar Gürsoy E; Babacan Yıldız G; İşak B; Uluç K; Hanağası H; Bilgiç B; Turgut N; Aysal F; Ertaş M; Boz C; Kotan D; İdrisoğlu H; Soysal A; Uzun Adatepe N; Akalın MA; Koç F; Tan E; Oflazer P; Deymeer F; Taştan Ö; Çiçek AE; Kavak E; Parman Y; Başak AN
    Hum Mutat; 2020 Aug; 41(8):e7-e45. PubMed ID: 32579787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New application of intelligent agents in sporadic amyotrophic lateral sclerosis identifies unexpected specific genetic background.
    Penco S; Buscema M; Patrosso MC; Marocchi A; Grossi E
    BMC Bioinformatics; 2008 May; 9():254. PubMed ID: 18513389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of Vertical Ground Reaction Forces Pattern Visualization in Neurodegenerative Diseases Identification Using Deep Learning and Recurrence Plot Image Feature Extraction.
    Lin CW; Wen TC; Setiawan F
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32664354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromatin accessibility prediction via a hybrid deep convolutional neural network.
    Liu Q; Xia F; Yin Q; Jiang R
    Bioinformatics; 2018 Mar; 34(5):732-738. PubMed ID: 29069282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Second-generation Irish genome-wide association study for amyotrophic lateral sclerosis.
    McLaughlin RL; Kenna KP; Vajda A; Bede P; Elamin M; Cronin S; Donaghy CG; Bradley DG; Hardiman O
    Neurobiol Aging; 2015 Feb; 36(2):1221.e7-13. PubMed ID: 25442119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classification of amyotrophic lateral sclerosis disease based on convolutional neural network and reinforcement sample learning algorithm.
    Sengur A; Akbulut Y; Guo Y; Bajaj V
    Health Inf Sci Syst; 2017 Dec; 5(1):9. PubMed ID: 29142739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploiting deep transfer learning for the prediction of functional non-coding variants using genomic sequence.
    Chen L; Wang Y; Zhao F
    Bioinformatics; 2022 Jun; 38(12):3164-3172. PubMed ID: 35389435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-Wide Gene-Set Analysis Identifies Molecular Mechanisms Associated with ALS.
    Vasilopoulou C; McDaid-McCloskey SL; McCluskey G; Duguez S; Morris AP; Duddy W
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36835433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene targeting in amyotrophic lateral sclerosis using causality-based feature selection and machine learning.
    Founta K; Dafou D; Kanata E; Sklaviadis T; Zanos TP; Gounaris A; Xanthopoulos K
    Mol Med; 2023 Jan; 29(1):12. PubMed ID: 36694130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Whole genome analyses reveal no pathogenetic single nucleotide or structural differences between monozygotic twins discordant for amyotrophic lateral sclerosis.
    Meltz Steinberg K; Nicholas TJ; Koboldt DC; Yu B; Mardis E; Pamphlett R
    Amyotroph Lateral Scler Frontotemporal Degener; 2015; 16(5-6):385-92. PubMed ID: 25960086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FIG4 variants in central European patients with amyotrophic lateral sclerosis: a whole-exome and targeted sequencing study.
    Osmanovic A; Rangnau I; Kosfeld A; Abdulla S; Janssen C; Auber B; Raab P; Preller M; Petri S; Weber RG
    Eur J Hum Genet; 2017 Feb; 25(3):324-331. PubMed ID: 28051077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterisation of retrotransposon insertion polymorphisms in whole genome sequencing data from individuals with amyotrophic lateral sclerosis.
    Savage AL; Iacoangeli A; Schumann GG; Rubio-Roldan A; Garcia-Perez JL; Al Khleifat A; Koks S; Bubb VJ; Al-Chalabi A; Quinn JP
    Gene; 2022 Nov; 843():146799. PubMed ID: 35963498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genotype-property patient-phenotype relations suggest that proteome exhaustion can cause amyotrophic lateral sclerosis.
    Kepp KP
    PLoS One; 2015; 10(3):e0118649. PubMed ID: 25798606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating distal and proximal information to predict gene expression via a densely connected convolutional neural network.
    Zeng W; Wang Y; Jiang R
    Bioinformatics; 2020 Jan; 36(2):496-503. PubMed ID: 31318408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.