These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 31510707)

  • 1. ShaKer: RNA SHAPE prediction using graph kernel.
    Mautner S; Montaseri S; Miladi M; Raden M; Costa F; Backofen R
    Bioinformatics; 2019 Jul; 35(14):i354-i359. PubMed ID: 31510707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of accessibility data from structure probing into RNA-RNA interaction prediction.
    Miladi M; Montaseri S; Backofen R; Raden M
    Bioinformatics; 2019 Aug; 35(16):2862-2864. PubMed ID: 30590479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A deep learning architecture for metabolic pathway prediction.
    Baranwal M; Magner A; Elvati P; Saldinger J; Violi A; Hero AO
    Bioinformatics; 2020 Apr; 36(8):2547-2553. PubMed ID: 31879763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DeepRaccess: high-speed RNA accessibility prediction using deep learning.
    Hara K; Iwano N; Fukunaga T; Hamada M
    Front Bioinform; 2023; 3():1275787. PubMed ID: 37881622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated recognition of functional compound-protein relationships in literature.
    Döring K; Qaseem A; Becer M; Li J; Mishra P; Gao M; Kirchner P; Sauter F; Telukunta KK; Moumbock AFA; Thomas P; Günther S
    PLoS One; 2020; 15(3):e0220925. PubMed ID: 32126064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graph neural representational learning of RNA secondary structures for predicting RNA-protein interactions.
    Yan Z; Hamilton WL; Blanchette M
    Bioinformatics; 2020 Jul; 36(Suppl_1):i276-i284. PubMed ID: 32657407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrating thermodynamic and sequence contexts improves protein-RNA binding prediction.
    Su Y; Luo Y; Zhao X; Liu Y; Peng J
    PLoS Comput Biol; 2019 Sep; 15(9):e1007283. PubMed ID: 31483777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate prediction of human miRNA targets via graph modeling of the miRNA-target duplex.
    Mohebbi M; Ding L; Malmberg RL; Momany C; Rasheed K; Cai L
    J Bioinform Comput Biol; 2018 Aug; 16(4):1850013. PubMed ID: 30012015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ConsAlign: simultaneous RNA structural aligner based on rich transfer learning and thermodynamic ensemble model of alignment scoring.
    Tagashira M
    Bioinformatics; 2023 May; 39(5):. PubMed ID: 37074925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Grouper: graph-based clustering and annotation for improved de novo transcriptome analysis.
    Malik L; Almodaresi F; Patro R
    Bioinformatics; 2018 Oct; 34(19):3265-3272. PubMed ID: 29746620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. OpenBioLink: a benchmarking framework for large-scale biomedical link prediction.
    Breit A; Ott S; Agibetov A; Samwald M
    Bioinformatics; 2020 Jul; 36(13):4097-4098. PubMed ID: 32339214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Onto2Vec: joint vector-based representation of biological entities and their ontology-based annotations.
    Smaili FZ; Gao X; Hoehndorf R
    Bioinformatics; 2018 Jul; 34(13):i52-i60. PubMed ID: 29949999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary Algorithm for RNA Secondary Structure Prediction Based on Simulated SHAPE Data.
    Montaseri S; Ganjtabesh M; Zare-Mirakabad F
    PLoS One; 2016; 11(11):e0166965. PubMed ID: 27893832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. miRLocator: A Python Implementation and Web Server for Predicting miRNAs from Pre-miRNA Sequences.
    Zhang T; Ju L; Zhai J; Song Y; Song J; Ma C
    Methods Mol Biol; 2019; 1932():89-97. PubMed ID: 30701493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AStrap: identification of alternative splicing from transcript sequences without a reference genome.
    Ji G; Ye W; Su Y; Chen M; Huang G; Wu X
    Bioinformatics; 2019 Aug; 35(15):2654-2656. PubMed ID: 30535139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autoencoder-based cluster ensembles for single-cell RNA-seq data analysis.
    Geddes TA; Kim T; Nan L; Burchfield JG; Yang JYH; Tao D; Yang P
    BMC Bioinformatics; 2019 Dec; 20(Suppl 19):660. PubMed ID: 31870278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ChopStitch: exon annotation and splice graph construction using transcriptome assembly and whole genome sequencing data.
    Khan H; Mohamadi H; Vandervalk BP; Warren RL; Chu J; Birol I
    Bioinformatics; 2018 May; 34(10):1697-1704. PubMed ID: 29300846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. StructureFold2: Bringing chemical probing data into the computational fold of RNA structural analysis.
    Tack DC; Tang Y; Ritchey LE; Assmann SM; Bevilacqua PC
    Methods; 2018 Jul; 143():12-15. PubMed ID: 29410279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. eToxPred: a machine learning-based approach to estimate the toxicity of drug candidates.
    Pu L; Naderi M; Liu T; Wu HC; Mukhopadhyay S; Brylinski M
    BMC Pharmacol Toxicol; 2019 Jan; 20(1):2. PubMed ID: 30621790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discriminating early- and late-stage cancers using multiple kernel learning on gene sets.
    Rahimi A; Gönen M
    Bioinformatics; 2018 Jul; 34(13):i412-i421. PubMed ID: 29949993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.