These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 31510916)

  • 21. Study of cell differentiation by phylogenetic analysis using histone modification data.
    Nair NU; Lin Y; Manasovska A; Antic J; Grnarova P; Sahu AD; Bucher P; Moret BM
    BMC Bioinformatics; 2014 Aug; 15(1):269. PubMed ID: 25104072
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Visualizing complex feature interactions and feature sharing in genomic deep neural networks.
    Liu G; Zeng H; Gifford DK
    BMC Bioinformatics; 2019 Jul; 20(1):401. PubMed ID: 31324140
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quartet-based inference of cell differentiation trees from ChIP-Seq histone modification data.
    Moumi NA; Das B; Tasnim Promi Z; Bristy NA; Bayzid MS
    PLoS One; 2019; 14(9):e0221270. PubMed ID: 31557185
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predicting RNA-protein binding sites and motifs through combining local and global deep convolutional neural networks.
    Pan X; Shen HB
    Bioinformatics; 2018 Oct; 34(20):3427-3436. PubMed ID: 29722865
    [TBL] [Abstract][Full Text] [Related]  

  • 25. NeuronMotif: Deciphering cis-regulatory codes by layer-wise demixing of deep neural networks.
    Wei Z; Hua K; Wei L; Ma S; Jiang R; Zhang X; Li Y; Wong WH; Wang X
    Proc Natl Acad Sci U S A; 2023 Apr; 120(15):e2216698120. PubMed ID: 37023129
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A computational method to predict topologically associating domain boundaries combining histone Marks and sequence information.
    Gan W; Luo J; Li YZ; Guo JL; Zhu M; Li ML
    BMC Genomics; 2019 Dec; 20(Suppl 13):980. PubMed ID: 31881832
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deep learning of immune cell differentiation.
    Maslova A; Ramirez RN; Ma K; Schmutz H; Wang C; Fox C; Ng B; Benoist C; Mostafavi S;
    Proc Natl Acad Sci U S A; 2020 Oct; 117(41):25655-25666. PubMed ID: 32978299
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Convolutional neural network based on SMILES representation of compounds for detecting chemical motif.
    Hirohara M; Saito Y; Koda Y; Sato K; Sakakibara Y
    BMC Bioinformatics; 2018 Dec; 19(Suppl 19):526. PubMed ID: 30598075
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deep learning of the splicing (epi)genetic code reveals a novel candidate mechanism linking histone modifications to ESC fate decision.
    Xu Y; Wang Y; Luo J; Zhao W; Zhou X
    Nucleic Acids Res; 2017 Dec; 45(21):12100-12112. PubMed ID: 29036709
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DeepDiff: DEEP-learning for predicting DIFFerential gene expression from histone modifications.
    Sekhon A; Singh R; Qi Y
    Bioinformatics; 2018 Sep; 34(17):i891-i900. PubMed ID: 30423076
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predicting chromatin organization using histone marks.
    Huang J; Marco E; Pinello L; Yuan GC
    Genome Biol; 2015 Aug; 16(1):162. PubMed ID: 26272203
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reveal cell type-specific regulatory elements and their characterized histone code classes via a hidden Markov model.
    Wang C; Zhang S
    BMC Genomics; 2018 Dec; 19(Suppl 10):903. PubMed ID: 30598107
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three-dimensional Epigenome Statistical Model: Genome-wide Chromatin Looping Prediction.
    Al Bkhetan Z; Plewczynski D
    Sci Rep; 2018 Mar; 8(1):5217. PubMed ID: 29581440
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Epigenetic signatures and temporal expression of lineage-specific genes in hESCs during differentiation to hepatocytes in vitro.
    Kim H; Jang MJ; Kang MJ; Han YM
    Hum Mol Genet; 2011 Feb; 20(3):401-12. PubMed ID: 21059703
    [TBL] [Abstract][Full Text] [Related]  

  • 35. DeepChrome: deep-learning for predicting gene expression from histone modifications.
    Singh R; Lanchantin J; Robins G; Qi Y
    Bioinformatics; 2016 Sep; 32(17):i639-i648. PubMed ID: 27587684
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deep neural networks for interpreting RNA-binding protein target preferences.
    Ghanbari M; Ohler U
    Genome Res; 2020 Feb; 30(2):214-226. PubMed ID: 31992613
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Iterative epigenomic analyses in the same single cell.
    Ohnuki H; Venzon DJ; Lobanov A; Tosato G
    Genome Res; 2021 Oct; 31(10):1819-1830. PubMed ID: 33627472
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A computational approach for the functional classification of the epigenome.
    Gandolfi F; Tramontano A
    Epigenetics Chromatin; 2017; 10():26. PubMed ID: 28515787
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Do short, frequent DNA sequence motifs mould the epigenome?
    Quante T; Bird A
    Nat Rev Mol Cell Biol; 2016 Apr; 17(4):257-62. PubMed ID: 26837845
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Integrated transcriptomic and epigenomic analysis of primary human lung epithelial cell differentiation.
    Marconett CN; Zhou B; Rieger ME; Selamat SA; Dubourd M; Fang X; Lynch SK; Stueve TR; Siegmund KD; Berman BP; Borok Z; Laird-Offringa IA
    PLoS Genet; 2013 Jun; 9(6):e1003513. PubMed ID: 23818859
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.