These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 31511464)
1. Amano Lipase PS-catalyzed Hydrolysis of Pine Nut Oil for the Fatty Acids Production Using Deep Eutectic Solvent as Co-solvent. Yang G; Tong T; Yang Y; Liu W; Wang X J Oleo Sci; 2019 Oct; 68(10):977-988. PubMed ID: 31511464 [TBL] [Abstract][Full Text] [Related]
2. Preparation of High Purity Δ5-Olefinic Acids from Pine Nut Oil via Repeated Lipase-Catalyzed Esterification. Kim H; Choi N; Kim HR; Lee J; Kim IH J Oleo Sci; 2018; 67(11):1435-1442. PubMed ID: 30404964 [TBL] [Abstract][Full Text] [Related]
3. Preparation of Pinolenic Acid Concentrates from Pine Nut Oil Fatty Acids by Solvent Fractionation. Chung MY; Kim IH; Kim BH J Oleo Sci; 2018; 67(11):1373-1379. PubMed ID: 30404957 [TBL] [Abstract][Full Text] [Related]
4. Lipase-catalyzed production of pinolenic acid concentrate from pine nut oil using a recirculating packed bed reactor. Zhao T; Kim BH; Hong SI; Yoon SW; Kim CT; Kim Y; Kim IH J Food Sci; 2012 Feb; 77(2):C267-71. PubMed ID: 22309126 [TBL] [Abstract][Full Text] [Related]
5. Preparation of highly purified pinolenic acid from pine nut oil using a combination of enzymatic esterification and urea complexation. No da S; Zhao TT; Kim Y; Yoon MR; Lee JS; Kim IH Food Chem; 2015 Mar; 170():386-93. PubMed ID: 25306361 [TBL] [Abstract][Full Text] [Related]
6. Lipase-catalysed production of triacylglycerols enriched in pinolenic acid at the sn-2 position from pine nut oil. Choi JH; Kim BH; Hong SI; Kim CT; Kim CJ; Kim Y; Kim IH J Sci Food Agric; 2012 Mar; 92(4):870-6. PubMed ID: 21953622 [TBL] [Abstract][Full Text] [Related]
7. Solvent Stability Study with Thermodynamic Analysis and Superior Biocatalytic Activity of Burkholderia cepacia Lipase Immobilized on Biocompatible Hybrid Matrix of Poly(vinyl alcohol) and Hypromellose. Badgujar KC; Bhanage BM J Phys Chem B; 2014 Dec; 118(51):14808-19. PubMed ID: 25474503 [TBL] [Abstract][Full Text] [Related]
8. Enzymatic synthesis of phenyl fatty hydroxamic acids from canola and palm oils. Jahangirian H; Haron MJ; Silong S; Yusof NA J Oleo Sci; 2011; 60(6):281-6. PubMed ID: 21606615 [TBL] [Abstract][Full Text] [Related]
9. Optimization of the enzymatic hydrolysis of Moringa oleifera Lam oil using molecular docking analysis for fatty acid specificity. Barbosa MS; Freire CCC; Almeida LC; Freitas LS; Souza RL; Pereira EB; Mendes AA; Pereira MM; Lima ÁS; Soares CMF Biotechnol Appl Biochem; 2019 Sep; 66(5):823-832. PubMed ID: 31206795 [TBL] [Abstract][Full Text] [Related]
10. Pinolenic Acid in Structured Triacylglycerols Exhibits Superior Intestinal Lymphatic Absorption As Compared to Pinolenic Acid in Natural Pine Nut Oil. Chung MY; Woo H; Kim J; Kong D; Choi HD; Choi IW; Kim IH; Noh SK; Kim BH J Agric Food Chem; 2017 Mar; 65(8):1543-1549. PubMed ID: 28198188 [TBL] [Abstract][Full Text] [Related]
11. Synthesis of monoacylglycerol containing pinolenic acid via stepwise esterification using a cold active lipase. Pyo YG; Hong SI; Kim Y; Kim BH; Kim IH Biotechnol Prog; 2012; 28(5):1218-24. PubMed ID: 22753389 [TBL] [Abstract][Full Text] [Related]
12. Analysis of the Behavior of Deep Eutectic Solvents upon Addition of Water: Its Effects over a Catalytic Reaction. Campodónico PR; Alarcón-Espósito J; Alcázar JJ; Olivares B; Suárez-Rozas C Molecules; 2024 Jul; 29(14):. PubMed ID: 39064875 [TBL] [Abstract][Full Text] [Related]
13. Kinetic Modeling, Thermodynamic Approach and Molecular Dynamics Simulation of Thermal Inactivation of Lipases from Ortega N; Sáez L; Palacios D; Busto MD Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35743268 [TBL] [Abstract][Full Text] [Related]
14. Tuning Lipase Reaction for Production of Fatty Acids from Oil. Odaneth AA; Vadgama RN; Bhat AD; Lali AM Appl Biochem Biotechnol; 2016 Oct; 180(3):504-515. PubMed ID: 27165048 [TBL] [Abstract][Full Text] [Related]
15. Packed-bed reactor running on babassu oil and glycerol to produce monoglycerides by enzymatic route using immobilized Burkholderia cepacia lipase. de Freitas L; dos Santos JC; Zanin GM; de Castro HF Appl Biochem Biotechnol; 2010 May; 161(1-8):372-81. PubMed ID: 19937155 [TBL] [Abstract][Full Text] [Related]
16. Deep eutectic solvents for biocatalytic transformations: focused lipase-catalyzed organic reactions. Tan JN; Dou Y Appl Microbiol Biotechnol; 2020 Feb; 104(4):1481-1496. PubMed ID: 31907576 [TBL] [Abstract][Full Text] [Related]
17. Biodiesel production from Jatropha oil catalyzed by immobilized Burkholderia cepacia lipase on modified attapulgite. You Q; Yin X; Zhao Y; Zhang Y Bioresour Technol; 2013 Nov; 148():202-7. PubMed ID: 24055964 [TBL] [Abstract][Full Text] [Related]
18. Kinetics and thermodynamics of lipase catalysed synthesis of propyl caprate. Parikh DT; Lanjekar KJ; Rathod VK Biotechnol Lett; 2019 Oct; 41(10):1163-1175. PubMed ID: 31463715 [TBL] [Abstract][Full Text] [Related]
19. Enzymatic Synthesis of Structured Monogalactosyldiacylglycerols Enriched in Pinolenic Acid. Kim J; Chung MY; Choi HD; Choi IW; Kim BH J Agric Food Chem; 2018 Aug; 66(30):8079-8085. PubMed ID: 29998729 [TBL] [Abstract][Full Text] [Related]
20. Kinetics of enzymatic transesterification and thermal deactivation using immobilized Burkholderia lipase as catalyst. Tran DT; Chang JS Bioprocess Biosyst Eng; 2014 Mar; 37(3):481-91. PubMed ID: 23880737 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]