BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 31511598)

  • 1. The involvement of McpB chemoreceptor from Pseudomonas aeruginosa PAO1 in virulence.
    García-Fontana C; Vílchez JI; González-Requena M; González-López J; Krell T; Matilla MA; Manzanera M
    Sci Rep; 2019 Sep; 9(1):13166. PubMed ID: 31511598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide identification of Pseudomonas aeruginosa virulence-related genes using a Caenorhabditis elegans infection model.
    Feinbaum RL; Urbach JM; Liberati NT; Djonovic S; Adonizio A; Carvunis AR; Ausubel FM
    PLoS Pathog; 2012; 8(7):e1002813. PubMed ID: 22911607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global gene expression profiles suggest an important role for nutrient acquisition in early pathogenesis in a plant model of Pseudomonas aeruginosa infection.
    Weir TL; Stull VJ; Badri D; Trunck LA; Schweizer HP; Vivanco J
    Appl Environ Microbiol; 2008 Sep; 74(18):5784-91. PubMed ID: 18641163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anr and its activation by PlcH activity in Pseudomonas aeruginosa host colonization and virulence.
    Jackson AA; Gross MJ; Daniels EF; Hampton TH; Hammond JH; Vallet-Gely I; Dove SL; Stanton BA; Hogan DA
    J Bacteriol; 2013 Jul; 195(13):3093-104. PubMed ID: 23667230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Pseudomonas aeruginosa accessory genome elements influence virulence towards Caenorhabditis elegans.
    Vasquez-Rifo A; Veksler-Lublinsky I; Cheng Z; Ausubel FM; Ambros V
    Genome Biol; 2019 Dec; 20(1):270. PubMed ID: 31823826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genes from pUM505 plasmid contribute to Pseudomonas aeruginosa virulence.
    Rodríguez-Andrade E; Hernández-Ramírez KC; Díaz-Peréz SP; Díaz-Magaña A; Chávez-Moctezuma MP; Meza-Carmen V; Ortíz-Alvarado R; Cervantes C; Ramírez-Díaz MI
    Antonie Van Leeuwenhoek; 2016 Mar; 109(3):389-96. PubMed ID: 26739475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A gene network-driven approach to infer novel pathogenicity-associated genes: application to
    De R; Whiteley M; Azad RK
    mSystems; 2023 Dec; 8(6):e0047323. PubMed ID: 37921470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide Screen of Pseudomonas aeruginosa in Saccharomyces cerevisiae Identifies New Virulence Factors.
    Zrieq R; Sana TG; Vergin S; Garvis S; Volfson I; Bleves S; Voulhoux R; Hegemann JH
    Front Cell Infect Microbiol; 2015; 5():81. PubMed ID: 26636043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using model systems to unravel host-Pseudomonas aeruginosa interactions.
    Grandy S; Scur M; Dolan K; Nickerson R; Cheng Z
    Environ Microbiol; 2023 Oct; 25(10):1765-1784. PubMed ID: 37290773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis of sRNA RsmZ regulation of Pseudomonas aeruginosa virulence.
    Jia X; Pan Z; Yuan Y; Luo B; Luo Y; Mukherjee S; Jia G; Liu L; Ling X; Yang X; Miao Z; Wei X; Bujnicki JM; Zhao K; Su Z
    Cell Res; 2023 Apr; 33(4):328-330. PubMed ID: 36828938
    [No Abstract]   [Full Text] [Related]  

  • 11. Plants and animals share functionally common bacterial virulence factors.
    Rahme LG; Ausubel FM; Cao H; Drenkard E; Goumnerov BC; Lau GW; Mahajan-Miklos S; Plotnikova J; Tan MW; Tsongalis J; Walendziewicz CL; Tompkins RG
    Proc Natl Acad Sci U S A; 2000 Aug; 97(16):8815-21. PubMed ID: 10922040
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Shahzad S; Krug SA; Mouriño S; Huang W; Kane MA; Wilks A
    mBio; 2024 Mar; 15(3):e0276323. PubMed ID: 38319089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Cellular Abundance of Chemoreceptors, Chemosensory Signaling Proteins, Sensor Histidine Kinases, and Solute Binding Proteins of
    Matilla MA; Genova R; Martín-Mora D; Maaβ S; Becher D; Krell T
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flagella, Chemotaxis and Surface Sensing.
    Matilla MA; Velando F; Monteagudo-Cascales E; Krell T
    Adv Exp Med Biol; 2022; 1386():185-221. PubMed ID: 36258073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative Genomics of Cyclic di-GMP Metabolism and Chemosensory Pathways in Shewanella algae Strains: Novel Bacterial Sensory Domains and Functional Insights into Lifestyle Regulation.
    Martín-Rodríguez AJ; Higdon SM; Thorell K; Tellgren-Roth C; Sjöling Å; Galperin MY; Krell T; Römling U
    mSystems; 2022 Apr; 7(2):e0151821. PubMed ID: 35311563
    [No Abstract]   [Full Text] [Related]  

  • 16. Plant Beneficial Deep-Sea Actinobacterium,
    Rangseekaew P; Barros-Rodríguez A; Pathom-Aree W; Manzanera M
    Biology (Basel); 2022 Jan; 11(2):. PubMed ID: 35205058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Major Outer Membrane Protein from
    Yang Z; Chen Y; Zhang Q; Chen X; Deng Z
    J Immunol Res; 2021; 2021():9409777. PubMed ID: 34812410
    [No Abstract]   [Full Text] [Related]  

  • 18. Deep-Sea Actinobacteria Mitigate Salinity Stress in Tomato Seedlings and Their Biosafety Testing.
    Rangseekaew P; Barros-Rodríguez A; Pathom-Aree W; Manzanera M
    Plants (Basel); 2021 Aug; 10(8):. PubMed ID: 34451732
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Matilla MA; Martín-Mora D; Gavira JA; Krell T
    Microbiol Mol Biol Rev; 2021 Feb; 85(1):. PubMed ID: 33441490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for Pentapeptide-Dependent and Independent CheB Methylesterases.
    Velando F; Gavira JA; Rico-Jiménez M; Matilla MA; Krell T
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33187094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.