These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

535 related articles for article (PubMed ID: 31511627)

  • 1. Metabolism and biochemical properties of nicotinamide adenine dinucleotide (NAD) analogs, nicotinamide guanine dinucleotide (NGD) and nicotinamide hypoxanthine dinucleotide (NHD).
    Yaku K; Okabe K; Gulshan M; Takatsu K; Okamoto H; Nakagawa T
    Sci Rep; 2019 Sep; 9(1):13102. PubMed ID: 31511627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overexpression of Nmnat3 efficiently increases NAD and NGD levels and ameliorates age-associated insulin resistance.
    Gulshan M; Yaku K; Okabe K; Mahmood A; Sasaki T; Yamamoto M; Hikosaka K; Usui I; Kitamura T; Tobe K; Nakagawa T
    Aging Cell; 2018 Aug; 17(4):e12798. PubMed ID: 29901258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing Aplysia californica adenosine 5'-diphosphate ribosyl cyclase for substrate binding requirements: design of potent inhibitors.
    Migaud ME; Pederick RL; Bailey VC; Potter BV
    Biochemistry; 1999 Jul; 38(28):9105-14. PubMed ID: 10413485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NAD+ analogs substituted in the purine base as substrates for poly(ADP-ribosyl) transferase.
    Oei SL; Griesenbeck J; Buchlow G; Jorcke D; Mayer-Kuckuk P; Wons T; Ziegler M
    FEBS Lett; 1996 Nov; 397(1):17-21. PubMed ID: 8941705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The reaction mechanism for CD38. A single intermediate is responsible for cyclization, hydrolysis, and base-exchange chemistries.
    Sauve AA; Munshi C; Lee HC; Schramm VL
    Biochemistry; 1998 Sep; 37(38):13239-49. PubMed ID: 9748331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TNB-738, a biparatopic antibody, boosts intracellular NAD+ by inhibiting CD38 ecto-enzyme activity.
    Ugamraj HS; Dang K; Ouisse LH; Buelow B; Chini EN; Castello G; Allison J; Clarke SC; Davison LM; Buelow R; Deng R; Iyer S; Schellenberger U; Manika SN; Bijpuria S; Musnier A; Poupon A; Cuturi MC; van Schooten W; Dalvi P
    MAbs; 2022; 14(1):2095949. PubMed ID: 35867844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel localization of CD38 in perivascular sympathetic nerve terminals.
    Smyth LM; Breen LT; Yamboliev IA; Mutafova-Yambolieva VN
    Neuroscience; 2006; 139(4):1467-77. PubMed ID: 16580146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design, synthesis and SAR studies of NAD analogues as potent inhibitors towards CD38 NADase.
    Wang S; Zhu W; Wang X; Li J; Zhang K; Zhang L; Zhao YJ; Lee HC; Zhang L
    Molecules; 2014 Sep; 19(10):15754-67. PubMed ID: 25268725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measuring CD38 Hydrolase and Cyclase Activities: 1,N
    de Oliveira GC; Kanamori KS; Auxiliadora-Martins M; Chini CCS; Chini EN
    Bio Protoc; 2018 Jul; 8(14):. PubMed ID: 30112426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NAD+ and sirtuins in aging and disease.
    Imai S; Guarente L
    Trends Cell Biol; 2014 Aug; 24(8):464-71. PubMed ID: 24786309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nicotinamide adenine dinucleotide homeostasis and signalling in heart disease: Pathophysiological implications and therapeutic potential.
    Mericskay M
    Arch Cardiovasc Dis; 2016 Mar; 109(3):207-15. PubMed ID: 26707577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implications of NAD
    Kang BE; Choi JY; Stein S; Ryu D
    Eur J Clin Invest; 2020 Oct; 50(10):e13334. PubMed ID: 32594513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nicotinamide adenine dinucleotide (NAD+): essential redox metabolite, co-substrate and an anti-cancer and anti-ageing therapeutic target.
    Griffiths HBS; Williams C; King SJ; Allison SJ
    Biochem Soc Trans; 2020 Jun; 48(3):733-744. PubMed ID: 32573651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NAD+ metabolism in health and disease.
    Belenky P; Bogan KL; Brenner C
    Trends Biochem Sci; 2007 Jan; 32(1):12-9. PubMed ID: 17161604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of Nicotinamide Adenine Dinucleotide and Related Precursors as Therapeutic Targets for Age-Related Degenerative Diseases: Rationale, Biochemistry, Pharmacokinetics, and Outcomes.
    Braidy N; Berg J; Clement J; Khorshidi F; Poljak A; Jayasena T; Grant R; Sachdev P
    Antioxid Redox Signal; 2019 Jan; 30(2):251-294. PubMed ID: 29634344
    [No Abstract]   [Full Text] [Related]  

  • 16. NAD⁺ in aging, metabolism, and neurodegeneration.
    Verdin E
    Science; 2015 Dec; 350(6265):1208-13. PubMed ID: 26785480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative Analysis of NAD Synthesis-Breakdown Fluxes.
    Liu L; Su X; Quinn WJ; Hui S; Krukenberg K; Frederick DW; Redpath P; Zhan L; Chellappa K; White E; Migaud M; Mitchison TJ; Baur JA; Rabinowitz JD
    Cell Metab; 2018 May; 27(5):1067-1080.e5. PubMed ID: 29685734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly(ADP-ribose) Polymerase (PARP) and PARP Inhibitors: Mechanisms of Action and Role in Cardiovascular Disorders.
    Henning RJ; Bourgeois M; Harbison RD
    Cardiovasc Toxicol; 2018 Dec; 18(6):493-506. PubMed ID: 29968072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using Clickable NAD
    Zhang L; Lin H
    Methods Mol Biol; 2017; 1608():95-109. PubMed ID: 28695506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lesch-Nyhan syndrome and its pathogenesis: normal nicotinamide-adenine dinucleotide but reduced ATP concentrations that correlate with reduced poly(ADP-ribose) synthetase activity in HPRT-deficient lymphoblasts.
    McCreanor GM; Harkness RA
    J Inherit Metab Dis; 1995; 18(6):737-47. PubMed ID: 8750613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.