These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 31511816)
41. The spinal cord dura mater reaction to nitinol and titanium alloy particles: a 1-year study in rabbits. Rhalmi S; Charette S; Assad M; Coillard C; Rivard CH Eur Spine J; 2007 Jul; 16(7):1063-72. PubMed ID: 17334794 [TBL] [Abstract][Full Text] [Related]
42. Biomechanics of polyaryletherketone rod composites and titanium rods for posterior lumbosacral instrumentation. Presented at the 2010 Joint Spine Section Meeting. Laboratory investigation. Bruner HJ; Guan Y; Yoganandan N; Pintar FA; Maiman DJ; Slivka MA J Neurosurg Spine; 2010 Dec; 13(6):766-72. PubMed ID: 21121756 [TBL] [Abstract][Full Text] [Related]
43. PEEK Versus Ti Interbody Fusion Devices: Resultant Fusion, Bone Apposition, Initial and 26-Week Biomechanics. Pelletier MH; Cordaro N; Punjabi VM; Waites M; Lau A; Walsh WR Clin Spine Surg; 2016 May; 29(4):E208-14. PubMed ID: 22801456 [TBL] [Abstract][Full Text] [Related]
44. Titanium versus polyetheretherketone implants for vertebral body replacement in the treatment of 77 thoracolumbar spinal fractures. Brandão RACS; Martins WCDS; Arantes AA; Gusmão SNS; Perrin G; Barrey C Surg Neurol Int; 2017; 8():191. PubMed ID: 28868203 [TBL] [Abstract][Full Text] [Related]
45. Comparison of polyetheretherketone cages with femoral cortical bone allograft as a single-piece interbody spacer in transforaminal lumbar interbody fusion. Cutler AR; Siddiqui S; Mohan AL; Hillard VH; Cerabona F; Das K J Neurosurg Spine; 2006 Dec; 5(6):534-9. PubMed ID: 17176018 [TBL] [Abstract][Full Text] [Related]
46. Impact of instrumentation material on local recurrence: a case-matched series using carbon fiber-PEEK vs. titanium. Ward J; Damante M; Wilson S; Coelho V; Franceschelli D; Elguindy AN; Thomas EM; Zhu S; Blakaj D; Beyer S; Raval R; Singh R; Xu DS; Elder JB; Palmer JD; Chakravarthy VB J Neurooncol; 2024 Oct; ():. PubMed ID: 39365543 [TBL] [Abstract][Full Text] [Related]
47. Titanium vs. polyetheretherketone (PEEK) interbody fusion: Meta-analysis and review of the literature. Seaman S; Kerezoudis P; Bydon M; Torner JC; Hitchon PW J Clin Neurosci; 2017 Oct; 44():23-29. PubMed ID: 28736113 [TBL] [Abstract][Full Text] [Related]
48. Influence of cage geometry on sagittal alignment in instrumented posterior lumbar interbody fusion. Gödde S; Fritsch E; Dienst M; Kohn D Spine (Phila Pa 1976); 2003 Aug; 28(15):1693-9. PubMed ID: 12897494 [TBL] [Abstract][Full Text] [Related]
49. Anti-infective and osteointegration properties of silicon nitride, poly(ether ether ketone), and titanium implants. Webster TJ; Patel AA; Rahaman MN; Sonny Bal B Acta Biomater; 2012 Dec; 8(12):4447-54. PubMed ID: 22863905 [TBL] [Abstract][Full Text] [Related]
50. Load transfer characteristics between posterior spinal implants and the lumbar spine under anterior shear loading: an in vitro investigation. Melnyk AD; Wen TL; Kingwell S; Chak JD; Singh V; Cripton PA; Fisher CG; Dvorak MF; Oxland TR Spine (Phila Pa 1976); 2012 Aug; 37(18):E1126-33. PubMed ID: 22565384 [TBL] [Abstract][Full Text] [Related]
51. Electron Microprobe Analysis and Tissue Reaction around Titanium Alloy Spinal Implants. Kim HD; Kim KS; Ki SC; Choi YS Asian Spine J; 2007 Jun; 1(1):1-7. PubMed ID: 20411145 [TBL] [Abstract][Full Text] [Related]
52. Degenerative conditions of the lumbar spine treated with intervertebral titanium cages and posterior instrumentation for circumferential fusion. Whitecloud TS; Castro FP; Brinker MR; Hartzog CW; Ricciardi JE; Hill C J Spinal Disord; 1998 Dec; 11(6):479-86. PubMed ID: 9884291 [TBL] [Abstract][Full Text] [Related]
53. CFR-PEEK Pedicle Screw Instrumentation for Spinal Neoplasms: A Single Center Experience on Safety and Efficacy. Joerger AK; Seitz S; Lange N; Aftahy AK; Wagner A; Ryang YM; Bernhardt D; Combs SE; Wostrack M; Gempt J; Meyer B Cancers (Basel); 2022 Oct; 14(21):. PubMed ID: 36358693 [TBL] [Abstract][Full Text] [Related]
54. Rigid, semirigid versus dynamic instrumentation for degenerative lumbar spinal stenosis: a correlative radiological and clinical analysis of short-term results. Korovessis P; Papazisis Z; Koureas G; Lambiris E Spine (Phila Pa 1976); 2004 Apr; 29(7):735-42. PubMed ID: 15087795 [TBL] [Abstract][Full Text] [Related]
55. Two in vivo surgical approaches for lumbar corpectomy using allograft and a metallic implant: a controlled clinical and biomechanical study. Huang P; Gupta MC; Sarigul-Klijn N; Hazelwood S Spine J; 2006; 6(6):648-58. PubMed ID: 17088195 [TBL] [Abstract][Full Text] [Related]
56. Evolution of Titanium Interbody Cages and Current Uses of 3D Printed Titanium in Spine Fusion Surgery. Lee JJ; Jacome FP; Hiltzik DM; Pagadala MS; Hsu WK Curr Rev Musculoskelet Med; 2024 Jul; ():. PubMed ID: 39003679 [TBL] [Abstract][Full Text] [Related]
57. Maintaining lumbar lordosis with anterior single solid-rod instrumentation in thoracolumbar and lumbar adolescent idiopathic scoliosis. Sweet FA; Lenke LG; Bridwell KH; Blanke KM Spine (Phila Pa 1976); 1999 Aug; 24(16):1655-62. PubMed ID: 10472099 [TBL] [Abstract][Full Text] [Related]
58. [Role of osteosynthesis in the consolidation of posterolateral arthrodesis: a comparative study in patients operated for lumbar stenosis]. Guigui P; Bizot P; Wodecki P; Metral B; Barre E; Deburge A Rev Chir Orthop Reparatrice Appar Mot; 2000 Sep; 86(5):452-63. PubMed ID: 10970969 [TBL] [Abstract][Full Text] [Related]
60. Quantity and Size of Titanium Particles Released from Different Mechanical Decontamination Procedures on Titanium Discs: An In Vitro Study. Kao A; Tawse-Smith A; Ma S; Duncan WJ; Reid M; Atieh MA Dent J (Basel); 2024 Apr; 12(5):. PubMed ID: 38786521 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]