These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 31511895)

  • 1. Photosynthesis Regulation in Response to Fluctuating Light in the Secondary Endosymbiont Alga Nannochloropsis gaditana.
    Bellan A; Bucci F; Perin G; Alboresi A; Morosinotto T
    Plant Cell Physiol; 2020 Jan; 61(1):41-52. PubMed ID: 31511895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoacclimation of photosynthesis in the Eustigmatophycean Nannochloropsis gaditana.
    Meneghesso A; Simionato D; Gerotto C; La Rocca N; Finazzi G; Morosinotto T
    Photosynth Res; 2016 Sep; 129(3):291-305. PubMed ID: 27448115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conservation of core complex subunits shaped the structure and function of photosystem I in the secondary endosymbiont alga Nannochloropsis gaditana.
    Alboresi A; Le Quiniou C; Yadav SK; Scholz M; Meneghesso A; Gerotto C; Simionato D; Hippler M; Boekema EJ; Croce R; Morosinotto T
    New Phytol; 2017 Jan; 213(2):714-726. PubMed ID: 27620972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoprotection strategies of the alga Nannochloropsis gaditana.
    Chukhutsina VU; Fristedt R; Morosinotto T; Croce R
    Biochim Biophys Acta Bioenerg; 2017 Jul; 1858(7):544-552. PubMed ID: 28499880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plant biodiversity and regulation of photosynthesis in the natural environment.
    Sello S; Meneghesso A; Alboresi A; Baldan B; Morosinotto T
    Planta; 2019 Apr; 249(4):1217-1228. PubMed ID: 30607502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the photosynthetic apparatus of the Eustigmatophycean Nannochloropsis gaditana: evidence of convergent evolution in the supramolecular organization of photosystem I.
    Basso S; Simionato D; Gerotto C; Segalla A; Giacometti GM; Morosinotto T
    Biochim Biophys Acta; 2014 Feb; 1837(2):306-14. PubMed ID: 24321505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photosynthetic response to fluctuating environments and photoprotective strategies under abiotic stress.
    Yamori W
    J Plant Res; 2016 May; 129(3):379-95. PubMed ID: 27023791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of photosynthetic electron transport and photoinhibition.
    Roach T; Krieger-Liszkay A
    Curr Protein Pept Sci; 2014; 15(4):351-62. PubMed ID: 24678670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Semi-empirical modeling of microalgae photosynthesis in different acclimation states - Application to N. gaditana.
    Bernardi A; Nikolaou A; Meneghesso A; Chachuat B; Morosinotto T; Bezzo F
    J Biotechnol; 2017 Oct; 259():63-72. PubMed ID: 28811214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of the photosynthetic apparatus under fluctuating growth light.
    Tikkanen M; Grieco M; Nurmi M; Rantala M; Suorsa M; Aro EM
    Philos Trans R Soc Lond B Biol Sci; 2012 Dec; 367(1608):3486-93. PubMed ID: 23148275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitivity of photosynthetic electron transport to photoinhibition in a temperate deciduous forest canopy: Photosystem II center openness, non-radiative energy dissipation and excess irradiance under field conditions.
    Niinemets U ; Kull O
    Tree Physiol; 2001 Aug; 21(12-13):899-914. PubMed ID: 11498337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photosynthetic regulation in fluctuating light under combined stresses of high temperature and dehydration in three contrasting mosses.
    Xia H; Chen K; Liu L; Plenkovic-Moraj A; Sun G; Lei Y
    Plant Sci; 2022 Oct; 323():111379. PubMed ID: 35850284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The response of Nannochloropsis gaditana to nitrogen starvation includes de novo biosynthesis of triacylglycerols, a decrease of chloroplast galactolipids, and reorganization of the photosynthetic apparatus.
    Simionato D; Block MA; La Rocca N; Jouhet J; Maréchal E; Finazzi G; Morosinotto T
    Eukaryot Cell; 2013 May; 12(5):665-76. PubMed ID: 23457191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unique photosynthetic electron transport tuning and excitation distribution in heterokont algae.
    Røkke GB; Melø TB; Mühlroth A; Vadstein O; Bones AM; Hohmann-Marriott MF
    PLoS One; 2019; 14(1):e0209920. PubMed ID: 30625205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of cyclic and pseudo-cyclic electron transport in response to dynamic light changes in Physcomitrella patens.
    Storti M; Alboresi A; Gerotto C; Aro EM; Finazzi G; Morosinotto T
    Plant Cell Environ; 2019 May; 42(5):1590-1602. PubMed ID: 30496624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoprotection of photosystems in fluctuating light intensities.
    Allahverdiyeva Y; Suorsa M; Tikkanen M; Aro EM
    J Exp Bot; 2015 May; 66(9):2427-36. PubMed ID: 25468932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term and short-term responses of the photosynthetic electron transport to fluctuating light.
    Kono M; Terashima I
    J Photochem Photobiol B; 2014 Aug; 137():89-99. PubMed ID: 24776379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The rise and fall of Light-Harvesting Complex Stress-Related proteins as photoprotection agents during evolution.
    Pinnola A
    J Exp Bot; 2019 Oct; 70(20):5527-5535. PubMed ID: 31424076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of cyclic electron flow around PSI at high light and its contribution to the induction of non-photochemical quenching of chl fluorescence in intact leaves of tobacco plants.
    Miyake C; Shinzaki Y; Miyata M; Tomizawa K
    Plant Cell Physiol; 2004 Oct; 45(10):1426-33. PubMed ID: 15564526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The chloroplast NADPH thioredoxin reductase C, NTRC, controls non-photochemical quenching of light energy and photosynthetic electron transport in Arabidopsis.
    Naranjo B; Mignée C; Krieger-Liszkay A; Hornero-Méndez D; Gallardo-Guerrero L; Cejudo FJ; Lindahl M
    Plant Cell Environ; 2016 Apr; 39(4):804-22. PubMed ID: 26476233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.