These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 31511976)
1. Alder pollen concentrations in the air during snowfall. Kasprzyk I; Borycka K Int J Biometeorol; 2019 Dec; 63(12):1651-1658. PubMed ID: 31511976 [TBL] [Abstract][Full Text] [Related]
3. Medium- and long-range transport events of Alnus pollen in western Mediterranean. Picornell A; Recio M; Ruiz-Mata R; García-Sánchez J; Cabezudo B; Trigo MDM Int J Biometeorol; 2020 Oct; 64(10):1637-1647. PubMed ID: 32507988 [TBL] [Abstract][Full Text] [Related]
4. The patterns of Puc M; Kasprzyk I Aerobiologia (Bologna); 2013; 29(4):495-511. PubMed ID: 24098067 [TBL] [Abstract][Full Text] [Related]
5. Prediction of airborne Alnus pollen concentration by using ARIMA models. Rodríguez-Rajo FJ; Valencia-Barrera RM; Vega-Maray AM; Suárez FJ; Fernández-González D; Jato V Ann Agric Environ Med; 2006; 13(1):25-32. PubMed ID: 16841868 [TBL] [Abstract][Full Text] [Related]
6. Environmental factors affecting the start of pollen season and concentrations of airborne Alnus pollen in two localities of Galicia (NW Spain). Rodriguez-Rajo FJ; Dopazo A; Jato V Ann Agric Environ Med; 2004; 11(1):35-44. PubMed ID: 15236496 [TBL] [Abstract][Full Text] [Related]
7. Influence of meteorological factors on the dynamics of hazel, alder, birch and poplar pollen in the 2021 season in Kielce, Poland. Ślusarczyk J; Kopacz-Bednarska A; Posłowska J Ann Agric Environ Med; 2022 Dec; 29(4):502-512. PubMed ID: 36583316 [TBL] [Abstract][Full Text] [Related]
8. Comparative analysis of pollen counts of Corylus, Alnus and Betula in Szczecin, Warsaw and Lublin (2000-2001). Weryszko-Chmielewska E; Puc M; Rapiejko P Ann Agric Environ Med; 2001; 8(2):235-40. PubMed ID: 11748882 [TBL] [Abstract][Full Text] [Related]
9. Comparison of Alnus, Corylus and Betula pollen counts in Lublin (Poland) and Skien (Norway). Piotrowska K Ann Agric Environ Med; 2004; 11(2):205-8. PubMed ID: 15627325 [TBL] [Abstract][Full Text] [Related]
10. Pollen long-distance transport associated with symptoms in pollen allergics on the German Alps: An old story with a new ending? Bayr D; Plaza MP; Gilles S; Kolek F; Leier-Wirtz V; Traidl-Hoffmann C; Damialis A Sci Total Environ; 2023 Jul; 881():163310. PubMed ID: 37028681 [TBL] [Abstract][Full Text] [Related]
11. The impact of meteorological conditions on the concentration of alder pollen in Sosnowiec (Poland) in the years 1997-2017. Dąbrowska-Zapart K; Chłopek K; Niedźwiedź T Aerobiologia (Bologna); 2018; 34(4):469-485. PubMed ID: 30532345 [TBL] [Abstract][Full Text] [Related]
12. Co-occurrence of Artemisia and Ambrosia pollen seasons against the background of the synoptic situations in Poland. Stępalska D; Myszkowska D; Katarzyna L; Katarzyna P; Katarzyna B; Kazimiera C; Łukasz G; Idalia K; Barbara MW; Małgorzata M; Małgorzata N; Krystyna PW; Małgorzata P; Elżbieta WC Int J Biometeorol; 2017 Apr; 61(4):747-760. PubMed ID: 27722901 [TBL] [Abstract][Full Text] [Related]
13. Analysis of airborne pollen concentrations in Zagreb, Croatia, 2002. Peternel R; Culig J; Mitić B; Vukusić I; Sostar Z Ann Agric Environ Med; 2003; 10(1):107-12. PubMed ID: 12852741 [TBL] [Abstract][Full Text] [Related]
14. Airborne pollen calendar of Lublin, Poland. Weryszko-Chmielewska E; Piotrowska K Ann Agric Environ Med; 2004; 11(1):91-7. PubMed ID: 15236504 [TBL] [Abstract][Full Text] [Related]
15. Is long range transport of pollen in the NW Mediterranean basin influenced by Northern Hemisphere teleconnection patterns? Izquierdo R; Alarcon M; Periago C; Belmonte J Sci Total Environ; 2015 Nov; 532():771-9. PubMed ID: 26125408 [TBL] [Abstract][Full Text] [Related]
16. The long distance transport of airborne Ambrosia pollen to the UK and the Netherlands from Central and south Europe. de Weger LA; Pashley CH; Šikoparija B; Skjøth CA; Kasprzyk I; Grewling Ł; Thibaudon M; Magyar D; Smith M Int J Biometeorol; 2016 Dec; 60(12):1829-1839. PubMed ID: 27121466 [TBL] [Abstract][Full Text] [Related]
17. Relationships between airborne pollen grains, wind direction and land cover using GIS and circular statistics. Maya-Manzano JM; Sadyś M; Tormo-Molina R; Fernández-Rodríguez S; Oteros J; Silva-Palacios I; Gonzalo-Garijo A Sci Total Environ; 2017 Apr; 584-585():603-613. PubMed ID: 28132776 [TBL] [Abstract][Full Text] [Related]
18. High Ambrosia pollen concentrations in Poland respecting the long distance transport (LDT). Stępalska D; Myszkowska D; Piotrowicz K; Kluska K; Chłopek K; Grewling Ł; Lafférsová J; Majkowska-Wojciechowska B; Malkiewicz M; Piotrowska-Weryszko K; Puc M; Rodinkova V; Rybníček O; Ščevková J; Voloshchuk K Sci Total Environ; 2020 Sep; 736():139615. PubMed ID: 32474278 [TBL] [Abstract][Full Text] [Related]
19. Assessment of the potential real pollen related allergenic load on the atmosphere of Porto city. Fernández-González M; Ribeiro H; Pereira JRS; Rodríguez-Rajo FJ; Abreu I Sci Total Environ; 2019 Jun; 668():333-341. PubMed ID: 30852210 [TBL] [Abstract][Full Text] [Related]
20. Changes in the pollen seasons of the early flowering trees Alnus spp. and Corylus spp. in Worcester, United Kingdom, 1996-2005. Emberlin J; Smith M; Close R; Adams-Groom B Int J Biometeorol; 2007 Jan; 51(3):181-91. PubMed ID: 17024396 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]