These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 31511976)
21. Quantification of airborne birch (Betula sp.) pollen grains and allergens in Krakow. Madeja J; Wypasek E; Plytycz B; Sarapata K; Harmata K Arch Immunol Ther Exp (Warsz); 2005; 53(2):169-74. PubMed ID: 15928586 [TBL] [Abstract][Full Text] [Related]
22. Detecting distant sources of airborne pollen for Poland: Integrating back-trajectory and dispersion modelling with a satellite-based phenology. Bogawski P; Borycka K; Grewling Ł; Kasprzyk I Sci Total Environ; 2019 Nov; 689():109-125. PubMed ID: 31271980 [TBL] [Abstract][Full Text] [Related]
23. The occurrence of Ambrosia pollen in the atmosphere of Northwest Turkey: investigation of possible source regions. Celenk S; Malyer H Int J Biometeorol; 2017 Aug; 61(8):1499-1510. PubMed ID: 28243727 [TBL] [Abstract][Full Text] [Related]
24. The dynamics of the Corylus, Alnus, and Betula pollen seasons in the context of climate change (SW Poland). Malkiewicz M; Drzeniecka-Osiadacz A; Krynicka J Sci Total Environ; 2016 Dec; 573():740-750. PubMed ID: 27591524 [TBL] [Abstract][Full Text] [Related]
25. Influence of meteorological parameters and air pollution on hourly fluctuation of birch (Betula L.) and ash (Fraxinus L.) airborne pollen. Puc M Ann Agric Environ Med; 2012; 19(4):660-5. PubMed ID: 23311785 [TBL] [Abstract][Full Text] [Related]
26. Fifteen years' record of airborne allergenic pollen and meteorological parameters in Thessaloniki, Greece. Gioulekas D; Balafoutis C; Damialis A; Papakosta D; Gioulekas G; Patakas D Int J Biometeorol; 2004 Feb; 48(3):128-36. PubMed ID: 14505161 [TBL] [Abstract][Full Text] [Related]
27. Spatiotemporal models for predicting high pollen concentration level of Corylus, Alnus, and Betula. Nowosad J Int J Biometeorol; 2016 Jun; 60(6):843-55. PubMed ID: 26487352 [TBL] [Abstract][Full Text] [Related]
28. Regional importance of Alnus pollen as an aeroallergen: a comparative study of Alnus pollen counts from Worcester (UK) and Poznań (Poland). Smith M; Emberlin J; Stach A; Czarnecka-Operacz M; Jenerowicz D; Silny W Ann Agric Environ Med; 2007; 14(1):123-8. PubMed ID: 17655189 [TBL] [Abstract][Full Text] [Related]
29. An investigation of airborne allergenic pollen at different heights. Xiao X; Fu A; Xie X; Kang M; Hu D; Yang P; Liu Z Int Arch Allergy Immunol; 2013; 160(2):143-51. PubMed ID: 23018449 [TBL] [Abstract][Full Text] [Related]
30. Identifying patterns of airborne pollen distribution using a synoptic climatology approach. Paschalidou AK; Psistaki K; Charalampopoulos A; Vokou D; Kassomenos P; Damialis A Sci Total Environ; 2020 Apr; 714():136625. PubMed ID: 32018949 [TBL] [Abstract][Full Text] [Related]
31. [Methods of studying airborne pollen and pollen calendars]. Thibaudon M; Caillaud D; Besancenot JP Rev Mal Respir; 2013 Jun; 30(6):463-79. PubMed ID: 23835319 [TBL] [Abstract][Full Text] [Related]
32. Behaviour of Quercus pollen in the air, determination of its sources and transport through the atmosphere of Mexico City and conurbated areas. Calderón-Ezquerro MC; Martinez-Lopez B; Guerrero-Guerra C; López-Espinosa ED; Cabos-Narvaez WD Int J Biometeorol; 2018 Sep; 62(9):1721-1732. PubMed ID: 29948412 [TBL] [Abstract][Full Text] [Related]
33. Environmental behaviour of airborne Amaranthaceae pollen in the southern part of the Iberian Peninsula, and its role in future climate scenarios. Cariñanos P; Alcázar P; Galán C; Domínguez E Sci Total Environ; 2014 Feb; 470-471():480-7. PubMed ID: 24176695 [TBL] [Abstract][Full Text] [Related]
34. Variation in airborne pollen concentrations among five monitoring locations in a desert urban environment. Patel TY; Buttner M; Rivas D; Cross C; Bazylinski DA; Seggev J Environ Monit Assess; 2018 Jun; 190(7):424. PubMed ID: 29943134 [TBL] [Abstract][Full Text] [Related]
35. Seasonal variations of airborne pollen in Allahabad, India. Sahney M; Chaurasia S Ann Agric Environ Med; 2008; 15(2):287-93. PubMed ID: 19061265 [TBL] [Abstract][Full Text] [Related]
36. Modern pollen distribution in the northeastern Indian Ocean and its significance. Luo C; Jiang W; Chen C; Peng H; Xiang R; Liu J; Lu J; Su X; Zhang Q; Yang M Int J Biometeorol; 2018 Aug; 62(8):1471-1488. PubMed ID: 29946986 [TBL] [Abstract][Full Text] [Related]
37. Persistence of airborne tree pollen from the Ramon GD; Felix M; Barrionuevo LB; Benedetti GM; Duval VS; Vanegas E; Cherrez-Ojeda I Allergol Immunopathol (Madr); 2022; 50(2):75-77. PubMed ID: 35257548 [TBL] [Abstract][Full Text] [Related]
38. The effects of continentality, marine nature and the recirculation of air masses on pollen concentration: Olea in a Mediterranean coastal enclave. Negral L; Moreno-Grau S; Galera MD; Elvira-Rendueles B; Costa-Gómez I; Aznar F; Pérez-Badia R; Moreno JM Sci Total Environ; 2021 Oct; 790():147999. PubMed ID: 34090169 [TBL] [Abstract][Full Text] [Related]
39. Risk of exposure to airborne Ambrosia pollen from local and distant sources in Europe - an example from Denmark. Sommer J; Smith M; Šikoparija B; Kasprzyk I; Myszkowska D; Grewling Ł; Skjøth CA Ann Agric Environ Med; 2015; 22(4):625-31. PubMed ID: 26706966 [TBL] [Abstract][Full Text] [Related]
40. Airborne pollen in Funchal city, (Madeira Island, Portugal) - First pollinic calendar and allergic risk assessment. Camacho IC Ann Agric Environ Med; 2015; 22(4):608-13. PubMed ID: 26706964 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]