BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 3151246)

  • 21. ADP-ribosylation of neurofilaments by a cytoplasmic ADP-ribose transferase associated with free mRNP.
    Jesser M; Hog F; Chypre C; Leterrier JF; Mandel P
    Biochem Biophys Res Commun; 1993 Jul; 194(2):916-22. PubMed ID: 8343173
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional aspects of mono- and poly(ADP-ribosyl)ation: subcellular distribution and ADP-ribosyl turnover under conditions of repair and 'starvation'.
    Hilz H; Wielckens K; Adamietz P; Bredehorst R; Kreymeier A
    Princess Takamatsu Symp; 1983; 13():155-63. PubMed ID: 6654828
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Long-term alcohol intake enhances ADP-ribosylation of the multifunctional enzyme, phosphoglucomutase, in rat liver.
    Nomura F; Noda M; Miyake M; Nakai T
    Hepatology; 1996 Nov; 24(5):1246-9. PubMed ID: 8903405
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of ADP-ribosylation sites on desmin and restoration of desmin intermediate filament assembly by de-ADP-ribosylation .
    Zhou H; Huiatt TW; Robson RM; Sernett SW; Graves DJ
    Arch Biochem Biophys; 1996 Oct; 334(2):214-22. PubMed ID: 8900395
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Physiology of ADP-ribosylation.
    Koch-Nolte F; Ziegler M
    FEBS J; 2013 Aug; 280(15):3483. PubMed ID: 23773547
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assay of arginine-specific adenosine-5'-diphosphate-ribosyltransferase by capillary electrophoresis.
    Tsuchiya M; Osago H; Shimoyama M
    Anal Biochem; 1995 Jan; 224(2):486-9. PubMed ID: 7733449
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The new life of a centenarian: signalling functions of NAD(P).
    Berger F; Ramírez-Hernández MH; Ziegler M
    Trends Biochem Sci; 2004 Mar; 29(3):111-8. PubMed ID: 15003268
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural basis for Tpt1-catalyzed 2'-PO
    Jacewicz A; Dantuluri S; Shuman S
    Proc Natl Acad Sci U S A; 2023 Oct; 120(44):e2312999120. PubMed ID: 37883434
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A proposed role for protein. Protein complexes in the regulation of the reversible ADP-ribosylation of dinitrogenase reductase.
    Grunwald SK; Zhang Y; Halbleib C; Roberts GP; Ludden PW
    Adv Exp Med Biol; 1997; 419():61-9. PubMed ID: 9193637
    [No Abstract]   [Full Text] [Related]  

  • 30. Differentiation of the uterus in preparation for gestation: a model for the action of progesterone.
    Cummings AM; Yochim JM
    J Theor Biol; 1984 Feb; 106(3):353-74. PubMed ID: 6325823
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adenylylation: renaissance of a forgotten post-translational modification.
    Itzen A; Blankenfeldt W; Goody RS
    Trends Biochem Sci; 2011 Apr; 36(4):221-8. PubMed ID: 21256032
    [TBL] [Abstract][Full Text] [Related]  

  • 32. pH-tuneable binding of 2'-phospho-ADP-ribose to ketopantoate reductase: a structural and calorimetric study.
    Ciulli A; Lobley CM; Tuck KL; Smith AG; Blundell TL; Abell C
    Acta Crystallogr D Biol Crystallogr; 2007 Feb; 63(Pt 2):171-8. PubMed ID: 17242510
    [TBL] [Abstract][Full Text] [Related]  

  • 33. ADP-ribosylation of proteins associated with heterogeneous nuclear RNA in rat liver nuclei.
    Kostka G; Schweiger A
    Biochim Biophys Acta; 1982 Feb; 696(2):139-44. PubMed ID: 6174154
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The power to reduce: pyridine nucleotides--small molecules with a multitude of functions.
    Pollak N; Dölle C; Ziegler M
    Biochem J; 2007 Mar; 402(2):205-18. PubMed ID: 17295611
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure of tRNA splicing enzyme Tpt1 illuminates the mechanism of RNA 2'-PO
    Banerjee A; Munir A; Abdullahu L; Damha MJ; Goldgur Y; Shuman S
    Nat Commun; 2019 Jan; 10(1):218. PubMed ID: 30644400
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phospho ADP ribosylation of human glucose 6 phosphate dehydrogenase: probable mechanism of the occurrence of hyperanodic forms.
    Skala H; Vibert M; Kahn A; Dreyfus JC
    Biochem Biophys Res Commun; 1979 Aug; 89(3):988-96. PubMed ID: 39564
    [No Abstract]   [Full Text] [Related]  

  • 37. Determination of ADP-ribosyl arginine anomers by reverse-phase high-performance liquid chromatography.
    Tsuchiya M; Tanigawa Y; Mishima K; Shimoyama M
    Anal Biochem; 1986 Sep; 157(2):381-4. PubMed ID: 3096165
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Past and current topics on ADP-ribosylation reactions.
    Faraone-Mennella MR
    Front Biosci (Landmark Ed); 2015 Jan; 20(3):431-9. PubMed ID: 25553459
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Detection of NAD:arginine ADPribosyltransferases in animal tissues using 125I-labeled 1-(p-hydroxyphenyl) 2-guanidinoethane as ADPribose acceptor.
    Watkins PA; Yost DA; Chang AW; Mekalanos JJ; Moss J
    Biochim Biophys Acta; 1985 Jul; 840(3):401-8. PubMed ID: 3924116
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of different molecules leading to the formation of hyperanodic forms of human glucose-6-phosphate dehydrogenase.
    Vibert M; Skala-Rubinson H; Kahn A; Dreyfus JC
    Biochem Biophys Res Commun; 1981 Mar; 99(1):259-66. PubMed ID: 7236265
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.