These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 3151252)

  • 1. Phosphorylation loops in synthetic peptides of the human neurofilament protein middle-sized subunit.
    Otvos L; Hollosi M; Perczel A; Dietzschold B; Fasman GD
    J Protein Chem; 1988 Aug; 7(4):365-76. PubMed ID: 3151252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Serine-23 is a major protein kinase A phosphorylation site on the amino-terminal head domain of the middle molecular mass subunit of neurofilament proteins.
    Sihag RK; Jaffe H; Nixon RA; Rong X
    J Neurochem; 1999 Feb; 72(2):491-9. PubMed ID: 9930720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site-specific phosphorylation of Lys-Ser-Pro repeat peptides from neurofilament H by cyclin-dependent kinase 5: structural basis for substrate recognition.
    Sharma P; Barchi JJ; Huang X; Amin ND; Jaffe H; Pant HC
    Biochemistry; 1998 Apr; 37(14):4759-66. PubMed ID: 9537991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of Al3+ binding and conformational properties of the alanine-substituted C-terminal domain of the NF-M protein and its relevance to Alzheimer's disease.
    Shen ZM; Perczel A; Hollósi M; Nagypál I; Fasman GD
    Biochemistry; 1994 Aug; 33(32):9627-36. PubMed ID: 8068639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stable intrachain and interchain complexes of neurofilament peptides: a putative link between Al3+ and Alzheimer disease.
    Hollósi M; Shen ZM; Perczel A; Fasman GD
    Proc Natl Acad Sci U S A; 1994 May; 91(11):4902-6. PubMed ID: 8197154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alzheimer disease tangles share immunological similarities with multiphosphorylation repeats in the two large neurofilament proteins.
    Lee VM; Otvos L; Schmidt ML; Trojanowski JQ
    Proc Natl Acad Sci U S A; 1988 Oct; 85(19):7384-8. PubMed ID: 2459703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversed-phase high-performance liquid chromatographic separation of synthetic phosphopeptide isomers.
    Otvos L; Tangoren IA; Wroblewski K; Hollosi M; Lee VM
    J Chromatogr; 1990 Jul; 512():265-72. PubMed ID: 2229230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyperphosphorylation of tau induces local polyproline II helix.
    Bielska AA; Zondlo NJ
    Biochemistry; 2006 May; 45(17):5527-37. PubMed ID: 16634634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorylation of serine residues affects the conformation of the calmodulin binding domain of human protein 4.1.
    Vetter SW; Leclerc E
    Eur J Biochem; 2001 Aug; 268(15):4292-9. PubMed ID: 11488924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of serine and threonine phosphorylation sites in beta-elimination/ethanethiol addition-modified proteins by electrospray tandem mass spectrometry and database searching.
    Jaffe H; Veeranna ; Pant HC
    Biochemistry; 1998 Nov; 37(46):16211-24. PubMed ID: 9819213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal ion-induced conformational changes of phosphorylated fragments of human neurofilament (NF-M) protein.
    Hollósi M; Urge L; Perczel A; Kajtár J; Teplán I; Otvös L; Fasman GD
    J Mol Biol; 1992 Feb; 223(3):673-82. PubMed ID: 1542114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Location and sequence characterization of the major phosphorylation sites of the high molecular mass neurofilament proteins M and H.
    Geisler N; Vandekerckhove J; Weber K
    FEBS Lett; 1987 Sep; 221(2):403-7. PubMed ID: 3114005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of novel in vitro PKA phosphorylation sites on the low and middle molecular mass neurofilament subunits by mass spectrometry.
    Cleverley KE; Betts JC; Blackstock WP; Gallo JM; Anderton BH
    Biochemistry; 1998 Mar; 37(11):3917-30. PubMed ID: 9521713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of dimer subunits of intermediate filament proteins.
    Quinlan RA; Hatzfeld M; Franke WW; Lustig A; Schulthess T; Engel J
    J Mol Biol; 1986 Nov; 192(2):337-49. PubMed ID: 2435918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A phosphoserine-lysine salt bridge within an alpha-helical peptide, the strongest alpha-helix side-chain interaction measured to date.
    Errington N; Doig AJ
    Biochemistry; 2005 May; 44(20):7553-8. PubMed ID: 15895998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the phosphorylation sites of human high molecular weight neurofilament protein by electrospray ionization tandem mass spectrometry and database searching.
    Jaffe H; Veeranna ; Shetty KT; Pant HC
    Biochemistry; 1998 Mar; 37(11):3931-40. PubMed ID: 9521714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca(2+)-induced conformational transitions of phosphorylated peptides.
    Hollósi M; Otvös L; Urge L; Kajtár J; Perczel A; Laczkó I; Vadász Z; Fasman GD
    Biopolymers; 1993 Mar; 33(3):497-510. PubMed ID: 8461457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A neurofilament-associated kinase phosphorylates only a subset of sites in the tail of chicken midsize neurofilament protein.
    Hollander BA; Ayyub C; Shaw G; Bennett GS
    J Neurochem; 1993 Dec; 61(6):2115-23. PubMed ID: 7504081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and study of peptides with semirigid i and i + 7 side-chain bridges designed for alpha-helix stabilization.
    Yu C; Taylor JW
    Bioorg Med Chem; 1999 Jan; 7(1):161-75. PubMed ID: 10199666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and characterization of peptides with amphiphilic beta-strand structures.
    Osterman DG; Kaiser ET
    J Cell Biochem; 1985; 29(2):57-72. PubMed ID: 4066779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.