BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 31512555)

  • 1. Quaternary structures of Vac8 differentially regulate the Cvt and PMN pathways.
    Park J; Kim HI; Jeong H; Lee M; Jang SH; Yoon SY; Kim H; Park ZY; Jun Y; Lee C
    Autophagy; 2020 Jun; 16(6):991-1006. PubMed ID: 31512555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structures of Vac8-containing protein complexes reveal the underlying mechanism by which Vac8 regulates multiple cellular processes.
    Kim H; Park J; Kim H; Ko N; Park J; Jang E; Yoon SY; Diaz JAR; Lee C; Jun Y
    Proc Natl Acad Sci U S A; 2023 May; 120(18):e2211501120. PubMed ID: 37094131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic insight into the nucleus-vacuole junction based on the Vac8p-Nvj1p crystal structure.
    Jeong H; Park J; Kim HI; Lee M; Ko YJ; Lee S; Jun Y; Lee C
    Proc Natl Acad Sci U S A; 2017 Jun; 114(23):E4539-E4548. PubMed ID: 28533415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The carboxy terminus of yeast Atg13 binds phospholipid membrane via motifs that overlap with the Vac8-interacting domain.
    Gatica D; Damasio A; Pascual C; Klionsky DJ; Ragusa MJ; Popelka H
    Autophagy; 2020 Jun; 16(6):1007-1020. PubMed ID: 31352862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vac8 determines phagophore assembly site vacuolar localization during nitrogen starvation-induced autophagy.
    Gatica D; Wen X; Cheong H; Klionsky DJ
    Autophagy; 2021 Jul; 17(7):1636-1648. PubMed ID: 32508216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vac8 Controls Vacuolar Membrane Dynamics during Different Autophagy Pathways in
    Boutouja F; Stiehm CM; Reidick C; Mastalski T; Brinkmeier R; Magraoui FE; Platta HW
    Cells; 2019 Jun; 8(7):. PubMed ID: 31262095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Higher-order assemblies of oligomeric cargo receptor complexes form the membrane scaffold of the Cvt vesicle.
    Bertipaglia C; Schneider S; Jakobi AJ; Tarafder AK; Bykov YS; Picco A; Kukulski W; Kosinski J; Hagen WJ; Ravichandran AC; Wilmanns M; Kaksonen M; Briggs JA; Sachse C
    EMBO Rep; 2016 Jul; 17(7):1044-60. PubMed ID: 27266708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atg11 links cargo to the vesicle-forming machinery in the cytoplasm to vacuole targeting pathway.
    Yorimitsu T; Klionsky DJ
    Mol Biol Cell; 2005 Apr; 16(4):1593-605. PubMed ID: 15659643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aspartyl aminopeptidase is imported from the cytoplasm to the vacuole by selective autophagy in Saccharomyces cerevisiae.
    Yuga M; Gomi K; Klionsky DJ; Shintani T
    J Biol Chem; 2011 Apr; 286(15):13704-13. PubMed ID: 21343297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies of cargo delivery to the vacuole mediated by autophagosomes in Saccharomyces cerevisiae.
    Suzuki K; Kamada Y; Ohsumi Y
    Dev Cell; 2002 Dec; 3(6):815-24. PubMed ID: 12479807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two Independent Pathways within Selective Autophagy Converge to Activate Atg1 Kinase at the Vacuole.
    Torggler R; Papinski D; Brach T; Bas L; Schuschnig M; Pfaffenwimmer T; Rohringer S; Matzhold T; Schweida D; Brezovich A; Kraft C
    Mol Cell; 2016 Oct; 64(2):221-235. PubMed ID: 27768871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Piecemeal microautophagy of the nucleus: genetic and morphological traits.
    Krick R; Mühe Y; Prick T; Bredschneider M; Bremer S; Wenzel D; Eskelinen EL; Thumm M
    Autophagy; 2009 Feb; 5(2):270-2. PubMed ID: 19182523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cargo proteins facilitate the formation of transport vesicles in the cytoplasm to vacuole targeting pathway.
    Shintani T; Klionsky DJ
    J Biol Chem; 2004 Jul; 279(29):29889-94. PubMed ID: 15138258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vac8 spatially confines autophagosome formation at the vacuole in
    Hollenstein DM; Gómez-Sánchez R; Ciftci A; Kriegenburg F; Mari M; Torggler R; Licheva M; Reggiori F; Kraft C
    J Cell Sci; 2019 Nov; 132(22):. PubMed ID: 31649143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective transport of alpha-mannosidase by autophagic pathways: structural basis for cargo recognition by Atg19 and Atg34.
    Watanabe Y; Noda NN; Kumeta H; Suzuki K; Ohsumi Y; Inagaki F
    J Biol Chem; 2010 Sep; 285(39):30026-33. PubMed ID: 20659891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural Studies of Selective Autophagy in Yeast.
    Yamasaki A; Watanabe Y; Noda NN
    Methods Mol Biol; 2019; 1880():77-90. PubMed ID: 30610690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of yeast Ape1 and its role in autophagic vesicle formation.
    Su MY; Peng WH; Ho MR; Su SC; Chang YC; Chen GC; Chang CI
    Autophagy; 2015; 11(9):1580-93. PubMed ID: 26208681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Piecemeal microautophagy of nucleus in Saccharomyces cerevisiae.
    Roberts P; Moshitch-Moshkovitz S; Kvam E; O'Toole E; Winey M; Goldfarb DS
    Mol Biol Cell; 2003 Jan; 14(1):129-41. PubMed ID: 12529432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The DHHC protein Pfa3 affects vacuole-associated palmitoylation of the fusion factor Vac8.
    Hou H; Subramanian K; LaGrassa TJ; Markgraf D; Dietrich LE; Urban J; Decker N; Ungermann C
    Proc Natl Acad Sci U S A; 2005 Nov; 102(48):17366-71. PubMed ID: 16301533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Piecemeal microautophagy of the nucleus requires the core macroautophagy genes.
    Krick R; Muehe Y; Prick T; Bremer S; Schlotterhose P; Eskelinen EL; Millen J; Goldfarb DS; Thumm M
    Mol Biol Cell; 2008 Oct; 19(10):4492-505. PubMed ID: 18701704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.