These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
962 related articles for article (PubMed ID: 31512729)
1. Evaluating shallow and deep learning strategies for the 2018 n2c2 shared task on clinical text classification. Oleynik M; Kugic A; Kasáč Z; Kreuzthaler M J Am Med Inform Assoc; 2019 Nov; 26(11):1247-1254. PubMed ID: 31512729 [TBL] [Abstract][Full Text] [Related]
2. A clinical text classification paradigm using weak supervision and deep representation. Wang Y; Sohn S; Liu S; Shen F; Wang L; Atkinson EJ; Amin S; Liu H BMC Med Inform Decis Mak; 2019 Jan; 19(1):1. PubMed ID: 30616584 [TBL] [Abstract][Full Text] [Related]
3. Social Reminiscence in Older Adults' Everyday Conversations: Automated Detection Using Natural Language Processing and Machine Learning. Ferrario A; Demiray B; Yordanova K; Luo M; Martin M J Med Internet Res; 2020 Sep; 22(9):e19133. PubMed ID: 32866108 [TBL] [Abstract][Full Text] [Related]
4. Cohort selection for clinical trials using hierarchical neural network. Xiong Y; Shi X; Chen S; Jiang D; Tang B; Wang X; Chen Q; Yan J J Am Med Inform Assoc; 2019 Nov; 26(11):1203-1208. PubMed ID: 31305921 [TBL] [Abstract][Full Text] [Related]
5. Medical knowledge infused convolutional neural networks for cohort selection in clinical trials. Chen CJ; Warikoo N; Chang YC; Chen JH; Hsu WL J Am Med Inform Assoc; 2019 Nov; 26(11):1227-1236. PubMed ID: 31390470 [TBL] [Abstract][Full Text] [Related]
6. Medical subdomain classification of clinical notes using a machine learning-based natural language processing approach. Weng WH; Wagholikar KB; McCray AT; Szolovits P; Chueh HC BMC Med Inform Decis Mak; 2017 Dec; 17(1):155. PubMed ID: 29191207 [TBL] [Abstract][Full Text] [Related]
7. Clinical trial cohort selection based on multi-level rule-based natural language processing system. Chen L; Gu Y; Ji X; Lou C; Sun Z; Li H; Gao Y; Huang Y J Am Med Inform Assoc; 2019 Nov; 26(11):1218-1226. PubMed ID: 31300825 [TBL] [Abstract][Full Text] [Related]
8. Cohort selection for clinical trials using deep learning models. Segura-Bedmar I; Raez P J Am Med Inform Assoc; 2019 Nov; 26(11):1181-1188. PubMed ID: 31532478 [TBL] [Abstract][Full Text] [Related]
9. Cohort selection for clinical trials: n2c2 2018 shared task track 1. Stubbs A; Filannino M; Soysal E; Henry S; Uzuner Ö J Am Med Inform Assoc; 2019 Nov; 26(11):1163-1171. PubMed ID: 31562516 [TBL] [Abstract][Full Text] [Related]
10. A comparison of word embeddings for the biomedical natural language processing. Wang Y; Liu S; Afzal N; Rastegar-Mojarad M; Wang L; Shen F; Kingsbury P; Liu H J Biomed Inform; 2018 Nov; 87():12-20. PubMed ID: 30217670 [TBL] [Abstract][Full Text] [Related]
11. deepBioWSD: effective deep neural word sense disambiguation of biomedical text data. Pesaranghader A; Matwin S; Sokolova M; Pesaranghader A J Am Med Inform Assoc; 2019 May; 26(5):438-446. PubMed ID: 30811548 [TBL] [Abstract][Full Text] [Related]
12. Boosting ICD multi-label classification of health records with contextual embeddings and label-granularity. Blanco A; Perez-de-Viñaspre O; Pérez A; Casillas A Comput Methods Programs Biomed; 2020 May; 188():105264. PubMed ID: 31851906 [TBL] [Abstract][Full Text] [Related]
13. Investigating the impact of pre-processing techniques and pre-trained word embeddings in detecting Arabic health information on social media. Albalawi Y; Buckley J; Nikolov NS J Big Data; 2021; 8(1):95. PubMed ID: 34249602 [TBL] [Abstract][Full Text] [Related]
14. Extracting Drug Names and Associated Attributes From Discharge Summaries: Text Mining Study. Alfattni G; Belousov M; Peek N; Nenadic G JMIR Med Inform; 2021 May; 9(5):e24678. PubMed ID: 33949962 [TBL] [Abstract][Full Text] [Related]
15. Extracting comprehensive clinical information for breast cancer using deep learning methods. Zhang X; Zhang Y; Zhang Q; Ren Y; Qiu T; Ma J; Sun Q Int J Med Inform; 2019 Dec; 132():103985. PubMed ID: 31627032 [TBL] [Abstract][Full Text] [Related]
16. A Hybrid Model for Family History Information Identification and Relation Extraction: Development and Evaluation of an End-to-End Information Extraction System. Kim Y; Heider PM; Lally IR; Meystre SM JMIR Med Inform; 2021 Apr; 9(4):e22797. PubMed ID: 33885370 [TBL] [Abstract][Full Text] [Related]
17. Recent advances in Swedish and Spanish medical entity recognition in clinical texts using deep neural approaches. Weegar R; Pérez A; Casillas A; Oronoz M BMC Med Inform Decis Mak; 2019 Dec; 19(Suppl 7):274. PubMed ID: 31865900 [TBL] [Abstract][Full Text] [Related]
18. Hybrid bag of approaches to characterize selection criteria for cohort identification. Vydiswaran VGV; Strayhorn A; Zhao X; Robinson P; Agarwal M; Bagazinski E; Essiet M; Iott BE; Joo H; Ko P; Lee D; Lu JX; Liu J; Murali A; Sasagawa K; Wang T; Yuan N J Am Med Inform Assoc; 2019 Nov; 26(11):1172-1180. PubMed ID: 31197354 [TBL] [Abstract][Full Text] [Related]
19. A comparative study on deep learning models for text classification of unstructured medical notes with various levels of class imbalance. Lu H; Ehwerhemuepha L; Rakovski C BMC Med Res Methodol; 2022 Jul; 22(1):181. PubMed ID: 35780100 [TBL] [Abstract][Full Text] [Related]
20. Deep contextualized embeddings for quantifying the informative content in biomedical text summarization. Moradi M; Dorffner G; Samwald M Comput Methods Programs Biomed; 2020 Feb; 184():105117. PubMed ID: 31627150 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]