BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 31513123)

  • 21. Synthesis of bioactive hemoglobin-based oxygen carrier nanoparticles via metal-phenolic complexation.
    Nadimifar M; Jin W; Coll-Satue C; Bor G; Kempen PJ; Moosavi-Movahedi AA; Hosta-Rigau L
    Biomater Adv; 2024 Jan; 156():213698. PubMed ID: 38006785
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Numerical simulation of oxygen delivery to muscle tissue in the presence of hemoglobin-based oxygen carriers.
    Patton JN; Palmer AF
    Biotechnol Prog; 2006; 22(4):1025-49. PubMed ID: 16889379
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis of Hemoglobin-Based Oxygen Carrier Nanoparticles By Desolvation Precipitation.
    Hickey R; Palmer AF
    Langmuir; 2020 Dec; 36(47):14166-14172. PubMed ID: 33205655
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthetic approaches to RBC mimicry and oxygen carrier systems.
    Modery-Pawlowski CL; Tian LL; Pan V; Sen Gupta A
    Biomacromolecules; 2013 Apr; 14(4):939-48. PubMed ID: 23452431
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Targeted O2 delivery by blood substitutes: in vitro arteriolar simulations of first- and second-generation products.
    Cole R; Vandegriff K; Szeri A; Savas O; Winslow R
    Microvasc Res; 2008 Nov; 76(3):169-79. PubMed ID: 18671987
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Current Challenges in the Development of Acellular Hemoglobin Oxygen Carriers by Protein Engineering.
    Benitez Cardenas AS; Samuel PP; Olson JS
    Shock; 2019 Oct; 52(1S Suppl 1):28-40. PubMed ID: 29112633
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Increased viscosity of hemoglobin-based oxygen carriers retards NO-binding when perfused through narrow gas-permeable tubes.
    Sakai H; Okuda N; Takeoka S; Tsuchida E
    Microvasc Res; 2011 Mar; 81(2):169-76. PubMed ID: 21167845
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impact of hemoglobin concentration and affinity for oxygen on tissue oxygenation: the case of hemoglobin-based oxygen carriers.
    Samaja M; Terraneo L
    Artif Organs; 2012 Feb; 36(2):210-5. PubMed ID: 21848930
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Use of the blood substitute HBOC-201 in critically ill patients during sickle crisis: a three-case series.
    Davis JM; El-Haj N; Shah NN; Schwartz G; Block M; Wall J; Tidswell M; DiNino E
    Transfusion; 2018 Jan; 58(1):132-137. PubMed ID: 29076161
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of recombinant hemoglobin-based oxygen carriers.
    Varnado CL; Mollan TL; Birukou I; Smith BJ; Henderson DP; Olson JS
    Antioxid Redox Signal; 2013 Jun; 18(17):2314-28. PubMed ID: 23025383
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Calculations of oxygen transport by red blood cells and hemoglobin solutions in capillaries.
    Vadapalli A; Goldman D; Popel AS
    Artif Cells Blood Substit Immobil Biotechnol; 2002 May; 30(3):157-88. PubMed ID: 12066873
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Triazole Disulfide Compound Increases the Affinity of Hemoglobin for Oxygen and Reduces the Sickling of Human Sickle Cells.
    Nakagawa A; Ferrari M; Schleifer G; Cooper MK; Liu C; Yu B; Berra L; Klings ES; Safo RS; Chen Q; Musayev FN; Safo MK; Abdulmalik O; Bloch DB; Zapol WM
    Mol Pharm; 2018 May; 15(5):1954-1963. PubMed ID: 29634905
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hemoglobin-Based Oxygen Carriers Incorporating Nanozymes for the Depletion of Reactive Oxygen Species.
    Jansman MMT; Liu X; Kempen P; Clergeaud G; Andresen TL; Thulstrup PW; Hosta-Rigau L
    ACS Appl Mater Interfaces; 2020 Nov; 12(45):50275-50286. PubMed ID: 33124811
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Artificial Blood Development Implications for Military Medicine.
    Melanson VR; Hershfield JR; Deegan MK; Cho H; Perinon D; Bateman SL; Barnhill JC
    J Spec Oper Med; 2023 Oct; 23(3):63-69. PubMed ID: 37253155
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hemoglobin-based oxygen carrier HBOC-201 provides higher and faster increase in oxygen tension in skeletal muscle of anemic dogs than do stored red blood cells.
    Standl T; Freitag M; Burmeister MA; Horn EP; Wilhelm S; Am Esch JS
    J Vasc Surg; 2003 Apr; 37(4):859-65. PubMed ID: 12663989
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanomaterial-related hemoglobin-based oxygen carriers, with emphasis on liposome and nano-capsules, for biomedical applications: current status and future perspectives.
    Zhu K; Wang L; Xiao Y; Zhang X; You G; Chen Y; Wang Q; Zhao L; Zhou H; Chen G
    J Nanobiotechnology; 2024 Jun; 22(1):336. PubMed ID: 38880905
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Relative Efficacies of HBOC-201 and Polyheme to Increase Oxygen Transport Compared to Blood and Crystalloids.
    Dubé GP; Pitman AN; Mackenzie CF
    Shock; 2019 Oct; 52(1S Suppl 1):100-107. PubMed ID: 29140831
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of facilitated diffusion in oxygen transport by cell-free hemoglobins: implications for the design of hemoglobin-based oxygen carriers.
    McCarthy MR; Vandegriff KD; Winslow RM
    Biophys Chem; 2001 Aug; 92(1-2):103-17. PubMed ID: 11527583
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Translational research for artificial red blood cells (hemoglobin vesicles)].
    Azuma H; Sakai H
    Rinsho Ketsueki; 2019; 60(9):1084-1091. PubMed ID: 31597831
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nuclear magnetic resonance and oxygen affinity study of cesium binding in human erythrocytes.
    Lin W; Mota de Freitas D; Zhang Q; Olsen KW
    Arch Biochem Biophys; 1999 Sep; 369(1):78-88. PubMed ID: 10462442
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.